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A Appendix

A brief note on references to equations and theorems

Please note that references to equations, lemmas, theorems, and corollaries that are not prefaced
by an “A” are references to the body of the main paper. By contrast, references prefaced by an
“A” are references to equations or lemmas in the on-line appendix itself. Please also note that
the equation numbers in the shortened appendix of the main paper do not match those found

here in the on-line appendix.

1.A Lemmas

Lemma A.l. Let ug; satisfy (3) and (4) and define & > 0, and let |67] < §. Defining

g% 07 =010-1) %ﬂg% ;» where ﬂg%_i is defined analogously to (6), we have:

o0 2 (o)
- 1
max B(i)* < |9 (chzku) (Z 2) <o, (A1)
k=1 v=1
e B(@ g = o(ln(TW*l)), fori=2,3 (A.2)
() e\ 2] (i—1) 5 2 -
r%azgiE |5$u|I<)5 <|u2’t(5T)|) ] = O<(1n(T) T) fori=2,3. (A.3)

Lemma A.2. Using the same definitions in the statement of Lemma A.1 and defining QZ@ anal-
ogously to ﬂgi, and defining égl)t_z = In(1l — L)(i) (51,t1{t>0}) as a special case, the following

results apply

a) T2 Zu2t it = Op (MDY, fori=1,2,3 (A.4)
T .
b)T ! Z (1n(T)2(Z*1)>, fori=1,2,3 (A.5)
t=1
T-1 ) 4 -
) sup T71S (@5 (6%))% = O, (ln (T)26—D) T%) . fori=2,3 (A.6)
67 |<5 t=1

d) T Zukt Zﬂth i 7 Va0, (a>(h+i—j); |’7a§:)7ﬂl(j>(h+i—j)| < 00, for (A.7)

h,i,j € {O,l},k:,l € {1,2}.

Remark A.3. Since €1 can be expressed as a special case of either ui; or us;, analogous
results hold for 55’171 and égzl ;(6%).  Likewise, rates on sums of relevant cross products are
implied by the rates on the sum of squares by simple application of the Cauchy-Schwarz and

Holder’s inequalities.



1.B Proofs

Proof of Lemma A.1

(A.1) follows by (3), (4) and the series expansion In(x) = Y2 (—1)/~! (z=1)?

j=1 J
=1 o0 ktt—1 )
~(1 .
ué t)fl = In(1 _L)U27t1{t>0} = —Zfﬂuzt = —ZC'zk Z < >5t—r7 and
7 =17 k=0  r=k+1 r—k
oo oo k+t—1j+t—1 1
(1

m B = mx> Y Y 3 (1) () euBlredon (4
- k=0 j=0r=k+1s=j+1 J

= (§|rczk||>2 (f} (1>> <

IN

For i > 1, since &g% = In(1 —L)ugtJr1 = —ZJ ILJ; ;tﬂ, g% =0,t <0, and Z 1=
O (In(7)),*®

2
t t T
Sy2 L1 |a6-1) &6-1) ~(i=1)p2 1
I{lga%((ult) = r{?%;;kjE‘%tﬂ —jU 41— k‘ <II{1§%¥E|U2¢ | Z; (A.9)
= Elad; " Po(n(T)?
max Eldy,  [*O(In(T)%)

2,t
(A.2). Let 95, and wg , j =0,1,2,... denote the Maclaurin coefficients in the expansion of

(1 — L)% and (1 — L)°r, respectlvely Noting that ué% =0, for t <0, [¢h5,,,| < [5,|, where 95,

is non-random, and “51(5’?) = Z] o Vs Tju21 _j» (A.3) then follows by

By (A.8) and recursive application of (A.9) we obtain max;<p E(u( )) =0 (ln(T)2(i_1)) showing

9 t—1 t—1
E ( @ (s ) _ E ~(Z (4)
| e, (E0GP) | = e (573 v i
< Ig;agZ\%J Z}%k 5550 4
2
, -1 N2
< BRE (S lus,l| =o((mntor)’),
=0

since Z;‘.Fz_ol V5 j ~ Z;‘F N 751 = O(T?) (Gradstein and Ryzhik 1994, eqn. 0.121).

Proof of Lemma A.2

8See Gradstein and Ryzhik (1994), eqn. 0.131.



Thus E|T Z ( 2t i ‘ =0 (In(T) (i_l)) = by (A. 2) (A.5) follows by Markov’s inequality.

For (A.4) write T—1/2 Zt 1 “2t 101 =T 712 Zt 1 UZt €1, t+1—< ZtT ! ﬂ24t l) T-1/2 Z el
The second term on the RHS is O, (In(T )(Z D) by (A.5), the Cauchy-Schwarz inequality, and the
(i)

central limit theorem for martingale difference sequences (MDS). For the first term, since iy ;_;

is predetermined, by the Law of Iterative Expectations,

T-1
E|T72Y"al) e

T
. e
= T E[ u2S i€1t+1€1 s—i—l] = E [ 2,t— 51 b1
t=1 =1

t=1 s=1

r T-1T-1

< max B [(@)_)2] Su = 0 (n(1)*1).

Next, (A.6) follows by similar argument as (A.5) since

T 2
E (sup Zﬂg% 5T> < Igl<ajg<E

~0 (ln (7)26D) T25) . (A1)
|62, <&

sup(Jag)op)))”

|6%.|<8

For (A.7), since convergence in probability is implied by MSE convergence, we need only

show that

limp o/

T_lzug Zﬂ,l(]tJrh j] :»‘}/ﬂg)’ﬂl(j)(h—i—i—j) and Thm var (T 1211& Z;gjtJrh j) =0.

Below we consider only the case in which ¢ = 7 = 1 and h = 0. The cases when i and/or j
is zero are similar but simpler and the cases in which h = 1 follow by very similar argument.

Substituting

t o]

t

_(1 1 1 .

ul(ﬁzil = In(1—-L)ujs—1 = — Z Uil = = Z . Z Cipet—1—r—p fori=jk
r=1 r=1 p=0

and noting that E [e;—1—p_pet—1-s—q| = X for 7 + p = s + ¢ and zero otherwise, we obtain

T— T-1 t ¢
S| = e Y
— e 1
=ttt 530 8 < ) <+p) e

defining By, , = {1+ maz(q—p,1),...,t+min(q—p,0)}. This limit is finite since its argument

lim F

T—o00

0o
/
§ 770kp [Et—l—s—qgt—l—r—p]clq

is bounded:

= 1 1
Y20 <T> <'f +p- Q) CirBiiCly| <
Zuckpnzmzuclqu S G o) = Tt ey 5 <o
p=0 q=0 r=1

q= 0 TEBT,p,q

’U



which is finite by (3). E[u,(c)t ;] = 0 and by similar argument 7! STt ~k't »T = ﬁl(JtJrh _j ~p

. T-1~(1 1 1 1
0. Therefore limp_oE |T71Y 0, ukg N l(t) 1] = limr_ oo F [u,(azflul(’t)fl] = ’yag) ﬂl(1)( ) by
definition.
Next we turn to the variance. Since 77! ZT ! ~k:'t T Zf ! aljt)—i—h _j —p 0, the required

result follows from (using (A.10) and the Cauchy-Schwarz and Holder’s Inequalities)

2

T—1
_ ~(1 ~(1 _ ~
Bllr S e a0 [ < & ( @) )( lz )]
t=1 t=1
T_1 2y 1/2 T 2y 1/2
_ ~(1 _ 1
< {E|T! (“12,271)2 E\T Z(ul{tll)2 < 0.
t=1 t=1

Proof of Theorem 2.1

Define 3{,2 = (ciw — dy), where —5:,@ is the integration order of the second-stage regressor. By

assumption
T 5% = T (d, — dy) = Op(1). (A.12)

Using demeaned fitted and true models Yy = Blgz,t + €1,4+1 and Yyor = 51@2,15 +E1441

t=1 t=1

-1 T-1 T-1
VT (1 - < 12“21;) (T_l/ > g e + BT 1/2 D (ugy — )iy ) (A.13)
Let 6 > 0 and let the indicator I take the value 1 if ](5 | < 6 and zero otherwise. Let n > 0.
Since d, —p dy, for large T', P(I; =0)=P (|6%\ > §) <n. Thus, Iy —, 1 and
VI(B1 = B1) = VT (B — 1) + (1L = VT (Br = 1) = VT (B1 = Br) + 0,(1),

where the last term is o, (1) since (1 — I5)v/T(81 — 1) =0 when I; = 1, and P(I; = 1) — 1.

Therefore in what follows below we will assume \5 | < 0 without loss of generality.
Sz

Next, applying an exact second order Taylor series expansion to the function (1 — L)°7 with
argument 5%‘1 about zero and where 47, lies between 0 and 5%‘1 gives
Sz > 1 A *
(1-L)Y°" = 146%In(1—1L)+ 7(53;)2 In(1— L)*(1 — L)% and (A.14)
g = (1= D) us im0y = uail oy + SR8y + 3 (OF)28)5(5)  (A15)

where ug?t)_2(5*) and ugt) , are defined in Lemma A.1.
Next, we turn to the first term in the numerator of vT'(3; — 31) in (A.13). Using (A.15) to

substitute for s ¢, we have

T-1 T—-1
T71/2 Z @2,t€1,t+1 = T71/2 Z Ug 1€1,t+1 + RLT —d N(O, Yuz,uz (0)211) (A16)
=1 t=1



by Davidson (2000, Theorem 6.2.3, p. 124), since ugt£1,+1 is a strictly stationary MDS," and
since, by Lemma A.2 (A.4) and (A.6), and the Cauchy-Schwarz and Holder inequalities,

’ﬂ

—1 T—
Rir = 55772 % ) 10 + (62)271/2 Zg (851041 = 0p(1) (A.17)
t=1 t=1

for a; > %(1 + 26), again with § arbitrarily small.
The behavior of the second term in the numerator of v/T'(8; — 1) in (A.13) is given by

T-1
BT Y23ty i = —BlT‘”QZ(‘STNQQ o+ O 0 )> (o0 + 5720

t=1
T-1
[P ~ * — N ~ —a
+ 2<a%>2u§?2_2<5T>) = —BIT V283 4) s — iR = BIOH(T'? %),
t=1
giving the order of magnitude of the contamination term By in (8), where Ry 7 is defined as,
- Sz 1 Sz ~ * T ~ * 1
o = T7Y2 (3302 75" (@10 + 30502 05 57 o (07w, + (55)° 051 570074
%(5?})4 tT 11 (ugz 5(0%)) } For a; > (14 26), and by Lemma A.2, we have Ry = o, (1).
For the denominator of v/T'(3; — f1) in equation (A.13) we have

T-1 T-1
TN a3, =T w3, + Rsp —p Yusus (0) (A.18)

)

t=1 t=1

by standard argument, since by Lemma A.2,

S\ D -1 1 ae (2 )2 S -1
Ry = (5T)2T ! (@5,2—1)21( T)4T ! (Mé,t)—g(dT)) + 207T 12“% 12
=1 =1 =1
A [ -1 )
+ OFPTT Y a8 (07 )ua (OFP T D ) o (67)aS) = 0p(T72)

for a, > 8. Combining the above results shows Theorem 2.1.

Proof of Corollary 2.2

Sincey, , = 31@2,t+é1¢+1 and by (A.15) we have, €1 441 = ytﬂ — Briiy = ElLtrl— (B1—B1)us 1
2r 5 ~(1 2 5 (2 . A T— 1 R
Sepial) | —5(08)2Mas) 5(05). Thus 6 = TP 3, = TP 005 63,y + Rar = S+ 0p(1)

9Note that uz; is a pre-determined short-memory linear process and e14+1 is an ii.d. series so that the

asymptotic normality result employed here is quite standard.



since, for ay, > g,

T-1 71
Rir = (B1— lzu2t+ﬁ1 (62)2T Z(~(,) D2+ 52 §z)ir1
=1 = 1
= o T
- 2(hi - Zu2t51 141 — 20551 T~ @512_161,#1—(5%)25171 Z@@) 2(07)e1,t41
t=1 t=1 t=1
T-1 T—1
N Qo= ~(1 ST 2 A — ~(2 *
+ 207 (B = BOBT Y wy )+ 05) (B = B1) BTN w8 5 (57)
=1 =1

T—
+ (OF)° BT Z@ 1l —(37) = 0y(1)
by (9), (A.12), (A.4) - (A.6), and the Cauchy-Schwarz and Holder inequalities.

Proof of Corollary 2.3

Result (a) follows from Theorem 2.1 and Corollary 2.2 by standard arguments (note that Br is
not present under the null H, : f; = 0). For (b) note that under H4 : 51 # 0, 31—51 = Op(T7)
by (9). Therefore

T—1 1/2 T—1 1/2 T—1 1/2
T2 = 57 (T—l Zvﬁ&) Pr=6" (T—l Za%,t) Prt+e! (T—l Z%) (Br — Bu)
=1 =1 =1
—1/2
- pzn/ ’Yuz,uz(o)lmﬁl

since the second term is oy, (1) on account of the consistency of B3, for Bi.

Proof of Theorem 2.4

Define Siyp = (iy —dy and let 8 > 0. By the arguments of Theorem 2.1 assume dy, cZy < & without
loss of generality. The denominator of Bl in (13) is unchanged relative to Theorem 2.1. Using
(11) to substitute for y;.41, we note that T(v=1) times the numerator is given by

T-1
T(ay—1) 2(1 - L)dyytH@Q’t = w1 Z dy= (ere+11qes0y) oy

t=1

Similarly to Theorem 2.1, an exact second order Taylor series expansion of 6T, with 0 < 5*y < 5y

gives
*Y

(1— L) =1+58%In(1— L) + %(55‘;)2 (In(1—L))* (1 - L)°r . (A.19)

Then, employing definitions analogous to those of Lemma A.1,

(1— L) (51,t+11{t>0}) Ugy = (51,t+1 + 5%552 (51,,) 52 1(5;2’/)) U y-



Therefore, T(@~Y times the numerator is given by the three terms:

T-1 T-1 T-1
Tlev=1) [(1_L)drdy€17t+1@2,t] = Tl ZElt+1U2t+5yT% 2 Z 1@
t=1 t=1 t=1
; T-1
2 — ~(2 XU\ A
G ERPTD Y TR (5 )i (A.20)

t=1

The behavior of the first term in (A.20) is derived in (A.16), from which we can see that

T-—1
TODN "oy ity 1 —va Loy =1/2) Yuz i (0)€5 (A.21)
t=1

where g is specified in (16). Substituting (A.15) for @y, the second term in (A.20) is given by

T T-1
S;aT(ay—nzgglgagt = §yries) Ze”uwayéw%—” lal)
t=1
1ay s — 1.
+ SOERPTE Y ) 5 (07). (A.22)
t=1

For the first term, using Lemma A.2 (A.7), T-(—)§y ST 1 églt)ug p=Towos T 2“2 ¢ —d
"yu%égl)(O)&;y, where the distribution of &sv is specified in (14) and (16). By (A.5)-(A.6) and the
Cauchy-Schwarz and Holder inequalities, the remaining two terms in (A.22) are O, (T~%*) and
Op (T(S_QW) In (T)) = 0y, (1) respectively.

Then the third main term in (A.20) is proportional to:

N2 -1 N2 .
(34)° “y‘”Z“ i, = (34) TN Y (6, + (8Y) S50 Y
t=1
T-1 T-1
~ * ~ 1 < 2 N gy — ~ 3 ~
x SO (B0) GRPTOD ST R (7)) (7). (A.23)
t=1 t=1

Using (A.5)-(A.6) and the Schwarz and Holder inequalities, the three terms in (A.23) are respec-
tively O, (T(é—%)zn (T)) = 0,(1), 0, (T(5—%—%)zn (T)) = 0,(1), and O, (T(%—%—M)zn (T)2> -
op (1).

Proof of Lemma 2.5

Since (1 — L)%y;41 = (1 — L)%y, 1 +y; where y; = > ey (1= L)y, q_; and 1; = T(j +dy —
d)/ [I(dy —d)I'(j +1)],

2
2E [gt41(b1,d,dy)] = E {(EI,H—I +yi + (b1 = B1)(1 - L)d“”l't> ] = E[ef 141

+ B (400t | > B[R] = 2Bl dyd)

because both y; and (b — 31)(1 — L)% x; are predetermined and thus orthogonal to E1,44+1-



Proof of Theorem 2.6

Define the ith derivative of 61 (dy + 6%) with respect to 6%, expressed as a function of 6%, as

B T-1 “lr
5%2)(5%) = (Z[ﬁz,t]Q) Zthln (1-L z)( )dy+6Tyt+1

t=1
Let ¢ = max(i, 1) and |6%| < . Then using (A.18) and Lemma A.2 we have

T-1 1y
By = [ﬁQ,t]Q) Z iy In(1 = L)D(1 = L)°7 (Brug,e + e1,041) (A.24)

—lpr_q
Z[QQ,t]Z) Z <u2t + 6Tué1t) 1+ 5 (5T) uz,t—2(5:$r)> (Blﬂg;—i(é%) + 552+1—z‘(5:yr)>

Likewise, we define the special case where 6% = 0 as By) = Bli)(O) =0, <ln(T)G*1)). Addi-
tionally, B%O)(dy) — 1 = Op(T~) holds by (9) and defining ﬁ%l) = ’YU2,U2(0)_1(517u2 S (=1)+
)
Vg -1(0)), it follows from (A.7), (A.18), and (A.24) that B§ (1) + 0p(1). It will also be
U2,&1

useful to define:

rio) = e&llﬂ J(00) + Bias)_(50) — B (M) uyy, for i=0,1,2,3  (A.25)
e = =B () (g — uny) for i=0,1,2,3 (A.26)
A = = (B = 81) oy (A.27)

For the special case that 6} = 0, we define 8 = Eg %+1 ; + Blu% i By)ﬂz,t and ;2 =
A)
B1 (Hz,t 22,15)'

The following convergence rates are a consequence of Lemma A.2 (and application of a

standard LLN to ug )

T-1

S

-1

S e = 3 [(0-i 60 + Bl (6%) = B (0F)us, ) (A.28)
t=1 t=1
% (50) (51/)_’_/3 5y 5(5) 5y -0 T1+251 T (i+j—2)
1,t41— 1“2t i( ) By (T)@zt =Up n(T)

T—-1 T—1

7 1 7 ~(1 T *

O (0)r) (6h) = Z 30 (648 (6) (S5l + - <6> a5 5 (55))° (A.29)
t=1

_ p<T1+25 200 I ( )7,-1—3—2))
A = (A0 - ) Zu% = 0,(T' 7). (A.30)

Plugging § = 0 into (A.28) and (A.29) gives the rates for Y7, rkzlrl(jz for k=1,2.

9



Noting that 1 ¢11 is a MDS and ug ¢, is predetermined so that T-1/2 ZtT:_ll €1,t+1U2,¢ converges

weakly and employing (A.15) and the results of Lemmas A.2 we also have, for any § > 0,

T—1 -
> ey = Zelm (001 + 8058~ 8wy, ) = 0, (T2(T)V)  (A31)
t=1

T-1 T—1 T-—1
> 51,t+17“§l,2 = 6% > 61,t+1@§t)_1 +1/208 ) 61,t+1ﬂ§?t)_2(5%)] (A.32)
=1

t=1 t=1
— 0, (@) ITV2) 1 0, (In(TY T ) = 0, (1n(TyTH20 )

T-1 T-1
Z 51,t+17"§(,)2 = = (B%O) - 51) Z Elt+1Ug ¢t = Op(Tl/Qfaz)‘ (A.33)
t=1 t=1

We next define eyy1(b,d) = (1 — L)%y 1 — b(1 — L)% L . Denoting, eEJZl as the ith partial

derivative of e;41 with respect to d (evaluated at d = dy,+9%.), by recursive calculation, we obtain
In(1— L)D(1 — L)y, y — B0 (6% (1~ L)% (A.34)

= (A1) + B (%) — B (s | — B (00) (1, — o)
= 0%) +ri(e%) fori=0,1,2,3.

et+1 (51 (0 )ady + 5:yF>

When 6%, = 0 and ¢ = 0 (A.34) further simplifies to
er+1 (ﬁ}o), dy) = e TSy TS (A.35)

The gradient (recall that we maximize only wrt dy) is then written as

T—1
TG Qr(dy) = TN e (B d,) el (3,4, (A.36)
t=1

T-1
T2 Y e (B dy ) 1) + 0,(1) = 0,(1)
t=1

by (A.28)-(A.33) and the Cauchy-Schwarz inequality and since o, = 1/2. The requirement that
ay = 1/2 is needed to bound the summations involving ré?t) 7“§1t) and ré?g 7“&2 . This establishes
the approximation in (A.36), which with By = T''/2, satisfies conditions (i) and (i) of (Andrews
and Sun 2004, Lemma 1).

Condition (iii) of (Andrews and Sun 2004, Lemma 1), requires, with probability approaching

one, that
9 o= - ) A(1))2 - 5(0)) (2) 5(2)
B2 72 Qr(dy) =T~ 3 ey (d B7) + 7703 evsa (dy, B ) e (4, 57) (A7)
t=1 t=1

10



be bounded above zero. The second term on the RHS of (A.37) is op(1) since, substituting
(A.34) and (A.35),

—1 T-1
T Z €t+1 < y’ﬁl ) €41 (dyv ?)) =T! (51 t+1 +T2t + éot)) x <T§2t) +Té2t)) = op(1)
t=1 t=1
(A.38)
A\ 2
by (A.28)-(A.33). Using (A.34) to substitute for €§21 (dy,5§1)) by (A.28)-(A.29),
= « (1)) 2 (1 ()2
7! Z e§+)1 (dy, 1 )> = 77! Z <r1t) + th) =71 Z <r§2> +0,(1). (A.39)
t=1 t=1

) _ . _ 1 2
Using?° Arie1 (0) = limp 00 T -1 Zt " [7‘1 t] = limp_ oo T 1 Z;le E [(a§2 + B u2t 1— fl)gm) ],

T
Y () = SO (B s - 5) | op0) = G 00,1 > 00,01
- - (A.40)
using (A.25) to substitute for 71 ; and where the convergence to ¥, , (0) is established by applying
(A.7) to each of the six constituent summands (i.e. 77! 2321(5&))2» T-! Zthl 5%2@&2_1, cen
-1 u3 ). The inequality is strict since the possibility that églt) + Blﬁgt)_l - 5%”@2,15 =0 as.
is ruled out by (3) and (4). Combining (A.38)-(A.40),

B1? % Qr(dy) = 77, (0) + 0p(1) > 0+ 0(1), (A.41)

which establishes condition (iii) of (Andrews and Sun 2004, Lemma 1).

For (iv), let Kp = In(T) — oo as T — oo (note that condition (iv) is required to hold only
for some sequence K7 — oo) and let § > 0 and € > 0 be selected such that 2§ + ¢ < 1/2. Then
by an exact Taylor expansion of VQQVT(dy + 6%.) about d,

sup T (V2Qr(dy + %)~ V*Qr(dy)) = sup  TTHEROGIQ (A, + 54TV
6L <T—1/2 K 6% <T-1/2 K7

(A.42)
where 87 lies between 0 and 6%. Then SUD|5v | <712 T20+e| 53| < SUD|5y [ <71/ T20+¢|6Y | =
T?+=12 K = 0(1) by assumption. It remains to be shown that SUD|5v | <7-1/2 K T~ (1+20%¢) 3
Qr(dy + 6%) = Op(1). The restriction |6%| < T-V2K, implies that 6% < § will be satis-
fied for T sufficiently large that TIn(T)~2 > 2. Therefore it will be sufficient to show that
SUD v | <5 T-(1420+9) 3 Qr(d, + 6%) = Op(1). The third derivative in (A.42) is given by

~

—1
B:*/° Qr(dy +6%) = 37"

(]

eith (dy+ 0%, B %)) ey (dy + o4, AP (1)) (A43)
1

| o+
~

T
+ 1"

M

eren (dy + 01 51769 ) ey (dy + 07 37 (5))

t=1

20Here and in the equation below, we use the consistency of Bil) for 651).
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Using (A.34), the supremum of the top line of (A.43) is given by

T
C(1425+e 1 1 2 2 —e
sup 37T Y (rD @) + 260 (26 + 1§ 08)) = 0, (T~ (1)) = 0,(1),
TI< t=1
where the order follows from (A.28)-(A.29) and (A.31)-(A.32). Similarly, from (A.34) the supre-
mum of the bottom line of (A.43) is given by

—(1425+e 0 0 3 3 —e
sup T (250 5™ (r0 6 + i 00 (rE 6% + 1800)) = 0p (T~ I(T)2) = 0,(1),
TI< t=1
where the order follows by (A.28)-(A.29). Therefore the RHS of (A.42) is 0,(1), which establishes
condition (iv) of (Andrews and Sun 2004, Lemma 1). The stated result then follows from the

application of their Lemma.

Proof of Corollary 2.7

cfy —p dy as an immediate consequence of Theorem 2.6. (1— L)%y, in (10) is an 1(0) dependent
variable, analogous to y;11 in (1). Thus as a consequence of Theorem 2.1 (here (1 — L)%y,
replaces y;4+1 in the proof) Bl(dy, afw) —p B1. Then since cfy —p dy, by the continuous mapping
theorem 53, (cfy, czx) —p B1.

Proof of Theorem 2.8

Define 5% = dy —dy and let d > 0. Due to the consistency of both dy and dg, we may assume
]5%\, |0%| < & without loss of generality using the same arguments given below (A.13). Similarly
to (A.15)

R ar 1 -~ N .
(1—L)rusylysey = u27t1{t>0}+5%u§t)fl+§(5%)2U§2—2(5T) and  (A.44)
A _— 1 - ~ .
(L= Derenlysey = eresiluso + 04200 +5(00)% 1 (67)

using the definitions in Lemmas A.1 and A.2 where 07, lies between 0 and 3:‘1'} By Theorem 2.6
. ~ -1 ~
TR = —(T7' 92 Qr(dy)  T72 v Qr(dy) (A.45)
T-1
_ S 5(0 1
= _’yrgl),rgl)(o) lT 1/2 Z €t41 <6§ )’dy> rg,t) + Op(l) = Op(l)a
t=1

where ngl): is defined in (A.25) and using the definitions of Lemma A.2. The final result in

(A.45) follows by (A.36), and (A.41). Note that when 8; = 0, ¥ 1y 1)(0) = Y1) €~(1)(0) —
LSTRELS 191
1) 1
2899, .0 (0) + (A1) 0 0).

27551)
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From (18), using (10) to substitute for y;+1, we have (suppressing the indicator function)

T-1 L7 T-1 “lr_1 )
~ ~ N N ~ N Y
Ar(dy) = (Z u%,t) i (1= L) yyy = (Z u%,t) D iy, (1= L) ([Brugs +€1441)

t=1 t=1 t=1 =

T-1 L
:=m+<§ﬁ&> [Brtts, (1= D)PFuze =ty ) + i1y (1= DFergn] . (A40)
t=1 t=1
Similarly to (A.13), (A.46) can be rearranged as
A T-1 -1
VI(Bi(dy) = B1) = (Tl aa) ( e Z iy, (1= L) e (A7)
t=1

The denominator of (A.47) is given by (A.18). For the second term in the numerator of (A.47),
using (A.15) and (A.44) to substitute for @z and (1 — ) Teq ++1 respectively,

T-—1
7172 Zu 0 (1= D)y = T—1/22<th+5Tug,2 - (5T) ) (5})) (A.48)
t=1
(v 4 8420l + @02, 7))
T-1

T—1/2 Z U ¢ (617154_1 + 83«5%}2) + Op(l)7
t=1

where T-1/2 Y71 <5§,1~§12 1+t 3 (5:‘3) gt) 2(5})) e14+1 = 0p(1), by (A.17), and the remaining
orders follow by Lemma A.2, using the Cauchy-Schwarz and Holder inequalities, since 3% =
O,(T~"/?) by (A.45) and 3% = 0,(T~/?) by assumption. Using Lemma A.2, (A.48) further
simplifies to

T-1

T2 Z dg (1 — Yreyr = T2 > eripugs + Vg £ (0)TY/20% + 0p(1). (A.49)
=1

Next, use (A.45) to substitute for 5% and re-arrange to obtain

T—1
_ _ _ - 5(0 1
T2 Z dy Prepn = T2Y (51,t+1u2,t = Y 20 (0,0 )(0)) tersn <5§ ) dy) 7’52)
t=1
+ 0p(1).
Using (A.35) to substitute for e;41 (B%O), dy> = €441 —I—Té?t) —i—ré?t) and further re-arranging gives

T-1

_ _ _ 1
T7-1/2 Z s Tgl 1 = T 1/2 Z €1,t4+1 (U2,t — Vuz,égl)(o)(’yﬁl),rgl)(0)) 17{ 2) (A.50)
t=1
T—1
0 1
Vs, 5(1)(0) (Vril),r“) N e (th + r( )) 7{2
t=1
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Note that from the definition in (A.26) we have, using Theorem 2.1,2! Lemma A.2, (A.15), and
(A.28)-(A.29),

N

T-1 -1
_T_1/2 Z Té(,)t)rg./lt) = ﬁlT_1/2 T%?t ('L]Q}t — u2,t) + Op(l) (A51)
t=1 t=1

T-1
- N 1 Sz \2~ *
= /T2y Y (6Tué%2_1 + 2<5T>2u§?2_2<6T>) 1 0p(1) = B10(1) + 0p(1).
t=1
Noting the definitions in (A.25) and (A.27) and using (9) (recall here a, = 1/2),
— (0.0 A(0 — 1 1 A(1
~T 2N = (B =) TV [+ Bras s — B ua (A.52)
t=1 t=1
T2 (B = 81) [7,, 20(0) = B Yusa(0)| + BiOL(1) +0,(1)
= £10p(1) +0p(1)

since 5%1) = Yugup (0) 71 (51%(1) w(l) + 7y, 20 (O)) (see the discussion above (A.25)).
2 €1
Therefore when 1 = 0, the limiting distribution of the numerator is only affected by the top
line of (A.50), for which

T-1 T-1

— _ _ — 1 _

T2 e (Uz,t—vm,ggl><0><w>,r§n(0>> %,2) = T2 eiié +op(1) (A53)
t=1 t=1

—d N (0,9,¢(0)%1,1))

y(0)y. 1) (1)(0)_11"&12. Next, by (Gradstein and Ryzhik 1994,
7"1 ,7"1 )

eqn. 0.121) and Toeplitz Lemma we may reexpress

where we define & = ug s — Vo 21
’ 2,81

7T2

1)’59)(0) = El’lg' (A.54)
Noting that when 8; = 0, ") = &) = BV uy,, and B = B + 0,(1) = Yupus (0)7, _1)(0) +

uz,eq
OP(1)7

&

Vigr® = Ty e(©) = B %0200(0) =0 and (A.55)
Yo (0) = 5 0) — 2895 0 (1))2 0 A.56
%”1,7‘1( ) 75?)7551)( ) ﬁl 7u27§§1)( )+(51 ) 7u2,u2( ) ( . )
= e 20 (0) = oz (0)71%2759)(0)2
implying that

T
Yee(0) = limg oo T 71 ZE [fﬂ = Yug,us (0) + ’77{1)’7{1)(0)_1,7@75%1)(0)2 (A.57)

t=1

7T2

-1
= a0+ (205, 00 = 10 @)

2Gince /31 is an implicit function of the true value of d, the consistency result from Theorem 2.1 implies that

B = B1 + op(1).
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Since Fie141 = 0 and & is realized at time ¢, €1 441§ is a MDS. The central limit theorem
therefore follows by Davidson (2000, Theorem 6.2.3, p. 124), giving \/T(Bl(ciy) —ﬁl) —4

N (0,V) where V' = 75,4, (0) 3¢, (0)Z1,1 = 21,1 | Yun,u2(0) — %Eiﬁuz,ggm(o)ﬂ

Proof of Corollary 2.9

The stated results follows from Theorem 2.8 after establishing the convergence of the sample
analogs to their population counterparts. In what follows below, we provide the argument for the
convergence of 71 ZT 1(é§12) to "yégl)égl)(O). The convergence of the remaining terms follow
by similar argument and are omitted to conserve space. Using (10) to substitute for (1— L)%y, 1

under Hy : 51 = 0, we have

€141 = 582“(3%) — BiIn(l — Loy,
where 5% = ciy —dy and 5512 41 is defined as in Lemma A.1. Applying In(1 — L) to both sides of

an expansion analogous to (A.14), we obtain
~(1 e ~(1 ~(2) *
Elar (0) = &) + 8+ 1/2007)%6175(67),

with [07.] < 5y By (A7) T-1 ) (51 t+1) —p = -1 (0). It remains to show that the other
1 =1

terms are of lower order. Noting that 6% = 0,(T~%/2) by (A.45), it follows from rate results of

Lemma A.2 that

T-1 T—1
_ ~(1 o _ ~(1
TN A (0 =T S (EN )2 + op(1)
t=1 t=1

Next, applying In(1 — L) to (A.14)
(1= L) = )y + 875 5 +1/2057) 57 o(57),

with |67 < 5% Then, since 5 —p 81 =0 and 5;:’;2 = O,(T~'/?) by assumption, and again using
the results of Lemma A.2, it is straightforward to show that

T—1 T—1
TN =T Y (08 + op(1),
t=1 t=1
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