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A Appendix

A brief note on references to equations and theorems

Please note that references to equations, lemmas, theorems, and corollaries that are not prefaced

by an “A” are references to the body of the main paper. By contrast, references prefaced by an

“A” are references to equations or lemmas in the on-line appendix itself. Please also note that

the equation numbers in the shortened appendix of the main paper do not match those found

here in the on-line appendix.

1.A Lemmas

Lemma A.1. Let u2,t satisfy (3) and (4) and define δ̄ > 0, and let |δT | < δ̄. Defining

ũ
(i)
2,t−i(δ

x
T ) = (1− L)δ

x
T ũ

(i)
2,t−i, where ũ

(i)
2,t−i is defined analogously to (6), we have:

max
t≤T

E(ũ
(1)
2,t )

2 < ∥Σ∥

( ∞∑
k=1

∥c2k∥

)2( ∞∑
v=1

1

v2

)
<∞, (A.1)

max
t≤T

E(ũ
(i)
2,t)

2 = O
(
ln(T )2(i−1)

)
, for i = 2, 3 (A.2)

max
t≤T

E

[
sup

|δxT |<δ̄

(
|ũ(i)2,t(δ

x
T )|
)2]

= O

((
ln(T )(i−1)T δ̄

)2)
for i = 2, 3. (A.3)

Lemma A.2. Using the same definitions in the statement of Lemma A.1 and defining ũ
(i)
1,t anal-

ogously to ũ
(i)
2,t, and defining ε̃

(i)
1,t−i = ln(1 − L)(i)

(
ε1,t1{t>0}

)
as a special case, the following

results apply

a) T−1/2
T−1∑
t=1

ũ
(i)
2,t−iε1,t+1 = Op

(
ln(T )(i−1)

)
, for i = 1, 2, 3 (A.4)

b)T−1
T−1∑
t=1

(ũ
(i)
2,t)

2 = Op

(
ln(T )2(i−1)

)
, for i = 1, 2, 3 (A.5)

c) sup
|δxT |<δ̄

T−1
T−1∑
t=1

(ũ
(i)
2,t(δ

x
T ))

2 = Op

(
ln (T )2(i−1) T 2δ̄

)
, for i = 2, 3 (A.6)

d) T−1
T−1∑
t=1

ũ
(i)
k,t−iũ

(j)
l,t+h−j →p γ̄ũ(i)

k ,ũ
(j)
l

(h+ i− j), |γ̄
ũ
(i)
k ,ũ

(j)
l

(h+ i− j)| <∞, for (A.7)

h, i, j ∈ {0, 1}, k, l ∈ {1, 2}.

Remark A.3. Since ε1,t can be expressed as a special case of either u1,t or u2,t, analogous

results hold for ε̃
(i)
1,t−i and ε̃

(i)
1,t−i(δ

y
T ). Likewise, rates on sums of relevant cross products are

implied by the rates on the sum of squares by simple application of the Cauchy-Schwarz and

Hölder’s inequalities.
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1.B Proofs

Proof of Lemma A.1

(A.1) follows by (3), (4) and the series expansion ln(x) =
∑∞

j=1(−1)j−1 (x−1)j

j :

ũ
(1)
2,t−1 = ln(1− L)u2,t1{t>0} = −

t−1∑
j=1

1

j
Lju2,t = −

∞∑
k=0

C2k

k+t−1∑
r=k+1

(
1

r − k

)
εt−r, and

max
t≤T

E(ũ
(1)
2,t−1)

2 = max
t≤T

∞∑
k=0

∞∑
j=0

k+t−1∑
r=k+1

j+t−1∑
s=j+1

(
1

r − k

)(
1

s− j

)
C2jE[εt−rε

′
t−s]C

′
2k (A.8)

≤ ∥Σ∥

( ∞∑
k=0

∥C2k∥

)2( ∞∑
v=1

(
1

v

)2
)
<∞.

For i > 1, since ũ
(i)
2,t = ln(1 − L)ũ

(i−1)
2,t+1 = −

∑t
j=1 L

j 1
j ũ

(i−1)
2,t+1, ũ

(i)
2,t = 0, t ≤ 0, and

∑T
j=1

1
j =

O (ln (T )),18

max
t≤T

(ũ
(i)
2,t)

2 = max
t≤T

t∑
j=1

t∑
k=1

1

k

1

j
E
∣∣∣ũ(i−1)

2,t+1−j ũ
(i−1)
2,t+1−k

∣∣∣ ≤ max
t≤T

E|ũ(i−1)
2,t |2

 T∑
j=1

1

j

2

(A.9)

= max
t≤T

E|ũ(i−1)
2,t |2O(ln(T )2).

By (A.8) and recursive application of (A.9) we obtain maxt≤T E(ũ
(i)
2,t)

2 = O
(
ln(T )2(i−1)

)
showing

(A.2). Let ψδT,j
and ψδ̄j

, j =0,1,2,. . . denote the Maclaurin coefficients in the expansion of

(1− L)δT and (1− L)δ̄T , respectively. Noting that ũ
(i)
2,t = 0, for t ≤ 0, |ψδT,j

| ≤ |ψδ̄j
|, where ψδ̄j

is non-random, and ũ
(i)
2,t(δ

x
T ) =

∑t−1
j=0 ψδT,j

ũ
(i)
2,t−j , (A.3) then follows by

max
t≤T

E

[
sup

|δxT |<δ̄

(
|ũ(i)2,t(δ

x
T )|
)2]

= max
t≤T

E

 sup
|δxT |<δ̄

∣∣∣∣∣∣
t−1∑
j=0

t−1∑
k=0

ψδT,j
ũ
(i)
2,t−jψδT,k

ũ
(i)
2,t−k

∣∣∣∣∣∣


≤ max
t≤T

T−1∑
j=0

∣∣∣ψδ̄j

∣∣∣ T−1∑
k=0

∣∣ψδ̄k

∣∣E ∣∣∣ũ(i)2,t−j ũ
(i)
2,t−k

∣∣∣
≤ E|ũ(i)2,t|

2

T−1∑
j=0

|ψδ̄,j |

2

= O

((
ln(T )(i−1)T δ̄

)2)
,

since
∑T−1

j=0 ψδ̄,j ≈
∑T−1

j=0 j
δ̄−1 = O(T δ̄) (Gradstein and Ryzhik 1994, eqn. 0.121).

Proof of Lemma A.2

We have T−1
∑T−1

t=1 (ũ
(i)
2,t−i)

2 = T−1
∑T−1

t=1 (ũ
(i)
2,t−i)

2−
(
T−1

∑T−1
t=1 ũ

(i)
2,t−i

)2
. By Jensen’s Inequality

E

(T−1
T−1∑
t=1

ũ
(i)
2,t−i

)2
 ≤ T−1

T−1∑
t=1

E(ũ
(i)
2,t−i)

2 ≤ max
t≤T

E(ũ
(i)
2,t)

2 . (A.10)

18See Gradstein and Ryzhik (1994), eqn. 0.131.
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Thus E
∣∣∣T−1

∑T−1
t=1 (ũ

(i)
2,t−i)

2
∣∣∣ = O

(
ln(T )2(i−1)

)
= by (A.2). (A.5) follows by Markov’s inequality.

For (A.4) write T−1/2
∑T−1

t=1 ũ
(i)
2,t−iε1,t+1 = T−1/2

∑T−1
t=1 ũ

(i)
2,t−iε1,t+1−

(
T−1

∑T−1
t=1 ũ

(i)
2,t−i

)
T−1/2

∑T−1
t=1 ε1,t+1.

The second term on the RHS is Op(ln(T )
(i−1)) by (A.5), the Cauchy-Schwarz inequality, and the

central limit theorem for martingale difference sequences (MDS). For the first term, since ũ
(i)
2,t−i

is predetermined, by the Law of Iterative Expectations,

E

[
T−1/2

T−1∑
t=1

ũ
(i)
2,t−iε1,t+1

]2
= T−1

T−1∑
t=1

T−1∑
s=1

E
[
ũ
(i)
2,t−iũ

(i)
2,s−iε1,t+1ε1,s+1

]
= T−1

T−1∑
t=1

E
[
(ũ

(i)
2,t−i)

2ε21,t+1

]
≤ max

t≤T
E
[
(ũ

(i)
2,t−i)

2
]
Σ11 = O

(
ln(T )2(i−1)

)
.

Next, (A.6) follows by similar argument as (A.5) since

E

( sup
|δxT |<δ̄

T−1
T−1∑
t=1

ũ
(i)
2,t(δ

x
T )

)2
 ≤ max

t≤T
E

[
sup

|δxT |<δ̄

(
|ũ(i)2,t(δ

x
T )|
)2]

= O
(
ln (T )2(i−1) T 2δ̄

)
. (A.11)

For (A.7), since convergence in probability is implied by MSE convergence, we need only

show that

limT→∞E

[
T−1

T−1∑
t=1

ũ
(i)
k,t−iũ

(j)
l,t+h−j

]
= γ̄

ũ
(i)
k ,ũ

(j)
l

(h+i−j) and lim
T→∞

var

(
T−1

T−1∑
t=1

ũ
(i)
k,t−iũ

(j)
l,t+h−j

)
= 0.

Below we consider only the case in which i = j = 1 and h = 0. The cases when i and/or j

is zero are similar but simpler and the cases in which h = 1 follow by very similar argument.

Substituting

ũ
(1)
k,t−1 = ln(1− L)ui,t−1 = −

t∑
r=1

1

r
ui,t−1−r = −

t∑
r=1

1

r

∞∑
p=0

Cipεt−1−r−p for i = j, k

and noting that E [εt−1−r−pεt−1−s−q] = Σ for r + p = s+ q and zero otherwise, we obtain

lim
T→∞

E

[
T−1

T−1∑
t=1

ũ
(1)
k,t−1ũ

(1)
l,t−1

]
= limT→∞T

−1
T−1∑
t=1

t∑
r=1

t∑
s=1

∞∑
p=0

∞∑
q=0

1

r

1

s
CkpE [εt−1−s−qεt−1−r−p]C

′
lq

= limT→∞T
−1

T−1∑
t=1

∞∑
p=0

∞∑
q=0

∑
r∈Bt,p,q

(
1

r

)(
1

r + p− q

)
CkpΣk,lC

′
lq

defining Bt,p,q = {1+max(q− p, 1), . . . , t+min(q− p, 0)}. This limit is finite since its argument

is bounded:∣∣∣∣∣∣T−1
T−1∑
t=1

∞∑
p=0

∞∑
q=0

∑
r∈Bt,p,q

(
1

r

)(
1

r + p− q

)
CkpΣk,lC

′
lq

∣∣∣∣∣∣ ≤
∞∑
p=0

∥Ckp∥Σk,l

∞∑
q=0

∥Clq∥
∑

r∈BT,p,q

∣∣∣∣(1

r

)(
1

r + p− q

)∣∣∣∣ ≤
∞∑
p=0

∥Ckp∥Σk,l

∞∑
q=0

∥Clq∥
∞∑
r=1

1

r2
<∞,
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which is finite by (3). E[ũ
(i)
k,t−i] = 0 and by similar argument T−1

∑T−1
t=1 ũ

(i)
k,t−i, T

−1
∑T−1

t=1 ũ
(j)
l,t+h−j →p

0. Therefore limT→∞E
[
T−1

∑T−1
t=1 ũ

(1)
k,t−1ũ

(1)
l,t−1

]
= limT→∞E

[
ũ
(1)
k,t−1ũ

(1)
l,t−1

]
= γ̄

ũ
(1)
k ,ũ

(1)
l

(0) by

definition.

Next we turn to the variance. Since T−1
∑T−1

t=1 ũ
(i)
k,t−i, T

−1
∑T−1

t=1 ũ
(j)
l,t+h−j →p 0, the required

result follows from (using (A.10) and the Cauchy-Schwarz and Hölder’s Inequalities)

E

∣∣∣∣∣T−1
T−1∑
t=1

ũ
(1)
k,t−1ũ

(1)
l,t−1

∣∣∣∣∣
2
 ≤ E

[(
T−1

T−1∑
t=1

(ũ
(1)
k,t−1)

2

)(
T−1

T−1∑
t=1

(ũ
(1)
l,t−1)

2

)]

≤

E
∣∣∣∣∣T−1

T−1∑
t=1

(ũ
(1)
k,t−1)

2

∣∣∣∣∣
2


1/2E
∣∣∣∣∣T−1

T−1∑
t=1

(ũ
(1)
l,t−1)

2

∣∣∣∣∣
2


1/2

<∞.

Proof of Theorem 2.1

Define δ̂xT = (d̂x − dx), where −δ̂xT is the integration order of the second-stage regressor. By

assumption

Tαx δ̂xT = Tαx(d̂x − dx) = Op(1). (A.12)

Using demeaned fitted and true models y
t+1

= β̂1û2,t + ε̂1,t+1 and y
t+1

= β1u2,t + ε1,t+1,

√
T (β̂1 − β1) =

(
T−1

T−1∑
t=1

û22,t

)−1(
T−1/2

T−1∑
t=1

û2,tε1,t+1 + β1T
−1/2

T−1∑
t=1

(u2,t − û2,t)û2,t

)
.(A.13)

Let δ̄ > 0 and let the indicator Iδ̄ take the value 1 if |δ̂xT | < δ̄ and zero otherwise. Let η > 0.

Since d̂x →p dx, for large T , P (Iδ̄ =0)=P (|δ̂xT | > δ̄) < η. Thus, Iδ̄ →p 1 and

√
T (β̂1 − β1) = Iδ̄

√
T (β̂1 − β1) + (1− Iδ̄)

√
T (β̂1 − β1) = Iδ̄

√
T (β̂1 − β1) + op(1),

where the last term is op (1) since (1 − Iδ̄)
√
T (β̂1 − β1) =0 when Iδ̄ = 1, and P (Iδ̄ = 1) → 1.

Therefore in what follows below we will assume |δ̂xT | < δ̄ without loss of generality.

Next, applying an exact second order Taylor series expansion to the function (1−L)δ̂
x
T with

argument δ̂xT about zero and where δ∗T lies between 0 and δ̂xT gives

(1− L)δ̂
x
T = 1 + δ̂xT ln(1− L) +

1

2
(δ̂xT )

2 ln(1− L)2(1− L)δ
∗
T and (A.14)

û2,t = (1− L)δ̂
x
T u2,t1{t>0} = u2,t1{t>0} + δ̂xT ũ

(1)
2,t−1 +

1

2
(δ̂xT )

2ũ
(2)
2,t−2(δ

∗
T ) (A.15)

where u
(2)
2,t−2(δ

∗
T ) and ũ

(1)
2,t−1 are defined in Lemma A.1.

Next, we turn to the first term in the numerator of
√
T (β̂1 − β1) in (A.13). Using (A.15) to

substitute for û2,t, we have

T−1/2
T−1∑
t=1

û2,tε1,t+1 = T−1/2
T−1∑
t=1

u2,tε1,t+1 +R1,T →d N(0, γu2,u2(0)Σ11) (A.16)
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by Davidson (2000, Theorem 6.2.3, p. 124), since u2,tε1,t+1 is a strictly stationary MDS,19 and

since, by Lemma A.2 (A.4) and (A.6), and the Cauchy-Schwarz and Hölder inequalities,

R1,T = δ̂xTT
−1/2

T−1∑
t=1

ũ
(1)
2,t−1ε1,t+1 +

1

2
(δ̂xT )

2T−1/2
T−1∑
t=1

ũ
(2)
2,t−2(δ

∗
T )ε1,t+1 = op(1) (A.17)

for αx >
1
4(1 + 2δ̄), again with δ̄ arbitrarily small.

The behavior of the second term in the numerator of
√
T (β̂1 − β1) in (A.13) is given by

β1T
−1/2

T−1∑
t=1

(u2,t − û2,t)û2,t = −β1T−1/2
T−1∑
t=1

(
δ̂xT ũ

(1)
2,t−1 +

1

2
(δ̂xT )

2ũ
(2)
2,t−2(δ

∗
T )

)(
u2,t + δ̂xT ũ

(1)
2,t−1

+
1

2
(δ̂xT )

2ũ
(2)
2,t−2(δ

∗
T )

)
= −β1T−1/2δ̂xT

T−1∑
t=1

ũ
(1)
2,t−1u2,t − β1R2,T = β1Op(T

1/2−αx),

giving the order of magnitude of the contamination term BT in (8), where R2,T is defined as,

R2,T = T−1/2
[
(δ̂xT )

2
∑T−1

t=1 (ũ
(1)
2,t−1)

2 + 1
2(δ̂

x
T )

2
∑T−1

t=1 ũ
(2)
2,t−2(δ

∗
T )u2,t + (δ̂xT )

3
∑T−1

t=1 ũ
(2)
2,t−2(δ

∗
T )ũ

(1)
2,t−1

1
4(δ̂

x
T )

4
∑T−1

t=1 (ũ
(2)
2,t−2(δ

∗
T ))

2
]
. For αx >

1
4(1 + 2δ̄), and by Lemma A.2, we have R2,T = op (1).

For the denominator of
√
T (β̂1 − β1) in equation (A.13) we have

T−1
T−1∑
t=1

û22,t = T−1
T−1∑
t=1

u22,t +R3,T →p γu2,u2(0) (A.18)

by standard argument, since by Lemma A.2,

R3,T = (δ̂xT )
2T−1

T−1∑
t=1

(ũ
(1)
2,t−1)

2 1

4
(δ̂xT )

4T−1
T−1∑
t=1

(
ũ
(2)
2,t−2(δ

∗
T )
)2

+ 2δ̂xTT
−1

T−1∑
t=1

ũ
(1)
2,t−1u2,t

+ (δ̂xT )
2T−1

T−1∑
t=1

ũ
(2)
2,t−2(δ

∗
T )u2,t(δ̂

x
T )

3T−1
T−1∑
t=1

ũ
(2)
2,t−2(δ

∗
T )ũ

(1)
2,t−1 = Op(T

−2αx)

+ +Op

(
T 2δ̄−4αx ln(T )2

)
Op(T

−αx)Op

(
T δ̄−2αx ln(T )

)
+Op

(
T δ̄−3αx ln(T )

)
= op(1),

for αx > δ̄. Combining the above results shows Theorem 2.1.

Proof of Corollary 2.2

Since y
t+1

= β̂1û2,t+ ε̂1,t+1 and by (A.15) we have, ε̂1,t+1 = y
t+1

−β̂1û2,t = ε1,t+1−(β̂1−β1)u2,t−
δ̂xT β̂1ũ

(1)
2,t−1−1

2(δ̂
x
T )

2β̂1ũ
(2)
2,t−2(δ

∗
T ). Thus σ̂

2 = T−1
∑T−1

t=1 ε̂
2
1,t+1 = T−1

∑T−1
t=1 ε

2
1,t+1 +R4,T = Σ11 + op(1)

19Note that u2,t is a pre-determined short-memory linear process and ε1,t+1 is an i.i.d. series so that the

asymptotic normality result employed here is quite standard.
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since, for αx >
δ̄
2 ,

R4,T = (β̂1 − β1)
2T−1

T−1∑
t=1

u22,t + β̂21(δ̂
x
T )

2T−1
T−1∑
t=1

(ũ
(1)
2,t−1)

2 +
1

4
β̂21(δ̂

x
T )

4T−1
T−1∑
t=1

(ũ
(2)
2,t−2(δ

∗
T ))

2

− 2(β̂1 − β1)T
−1

T−1∑
t=1

u2,tε1,t+1 − 2δ̂xT β̂1T
−1

T−1∑
t=1

ũ
(1)
2,t−1ε1,t+1 − (δ̂xT )

2β̂1T
−1

T−1∑
t=1

ũ
(2)
2,t−2(δ

∗
T )ε1,t+1

+ 2δ̂xT (β̂1 − β1)β̂1T
−1

T−1∑
t=1

u2,tũ
(1)
2,t−1 + (δ̂xT )

2
(
β̂1 − β1

)
β̂1T

−1
T−1∑
t=1

u2,tũ
(2)
2,t−2(δ

∗
T )

+ (δ̂xT )
3β̂21T

−1
T−1∑
t=1

ũ
(1)
2,t−1ũ

(2)
2,t−2(δ

∗
T ) = op(1)

by (9), (A.12), (A.4) - (A.6), and the Cauchy-Schwarz and Hölder inequalities.

Proof of Corollary 2.3

Result (a) follows from Theorem 2.1 and Corollary 2.2 by standard arguments (note that BT is

not present under the nullHo : β1 = 0). For (b) note that underHA : β1 ̸= 0, β̂1−β1 = Op(T
−αx)

by (9). Therefore

T−1/2t = σ̂−1

(
T−1

T−1∑
t=1

û22,t

)1/2

β̂1 = σ̂−1

(
T−1

T−1∑
t=1

û22,t

)1/2

β1 + σ̂−1

(
T−1

T−1∑
t=1

û22,t

)1/2

(β̂1 − β1)

→ pΣ
−1/2
11 γu2,u2(0)

1/2β1

since the second term is op (1) on account of the consistency of β̂1 for β1.

Proof of Theorem 2.4

Define δ̂yT = d̂y − dy and let δ̄ > 0. By the arguments of Theorem 2.1 assume d̂x, d̂y < δ̄ without

loss of generality. The denominator of β̂1 in (13) is unchanged relative to Theorem 2.1. Using

(11) to substitute for yt+1, we note that T (αy−1) times the numerator is given by

T (αy−1)
T−1∑
t=1

(1− L)d̂yyt+1û2,t = T (αy−1)
T−1∑
t=1

(1− L)d̂y−dy
(
ε1,t+11{t>0}

)
û2,t.

Similarly to Theorem 2.1, an exact second order Taylor series expansion of δ̂yT , with 0 ≤ δ∗yT ≤ δ̂yT ,

gives

(1− L)δ̂
y
T = 1 + δ̂yT ln(1− L) +

1

2
(δ̂yT )

2 [ln(1− L)]2 (1− L)δ
∗y
T . (A.19)

Then, employing definitions analogous to those of Lemma A.1,

(1− L)d̂y−dy
(
ε1,t+11{t>0}

)
û2,t =

(
ε1,t+1 + δ̂yT ε̃

(1)
1,t +

1

2
(δ̂yT )

2ε̃
(2)
1,t−1(δ

∗y
T )

)
û2,t.
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Therefore, T (αy−1) times the numerator is given by the three terms:

T (αy−1)
T−1∑
t=1

[(1− L)d̂y−dyε1,t+1û2,t] = T (αy−1)
T−1∑
t=1

ε1,t+1û2,t + δ̂yTT
(αy−1)

T−1∑
t=1

ε̃
(1)
1,t û2,t

+
1

2
(δ̂yT )

2T (αy−1)
T−1∑
t=1

ε̃
(2)
1,t−1(δ

∗y
T )û2,t. (A.20)

The behavior of the first term in (A.20) is derived in (A.16), from which we can see that

T (αy−1)
T−1∑
t=1

ε1,t+1û2,t →d 1{αy=1/2}γu2,u2(0)ξβ (A.21)

where ξβ is specified in (16). Substituting (A.15) for û2,t, the second term in (A.20) is given by

δ̂yTT
(αy−1)

T−1∑
t=1

ε̃
(1)
1,t û2,t = δ̂yTT

(αy−1)
T−1∑
t=1

ε̃
(1)
1,tu2,t + δ̂yT δ̂

x
TT

(αy−1)
T−1∑
t=1

ε̃
(1)
1,t ũ

(1)
2,t−1

+
1

2
δ̂yT (δ̂

x
T )

2T (αy−1)
T−1∑
t=1

ε̃
(1)
1,t ũ

(2)
2,t−2(δ

∗
T ). (A.22)

For the first term, using Lemma A.2 (A.7), T−(1−αy)δ̂yT
∑T−1

t=1 ε̃
(1)
1,tu2,t = Tαy δ̂yTT

−1
∑T−1

t=1 ε̃
(1)
1,tu2,t →d

γ̄
u2,ε̃

(1)
1

(0)ξδy , where the distribution of ξδy is specified in (14) and (16). By (A.5)-(A.6) and the

Cauchy-Schwarz and Hölder inequalities, the remaining two terms in (A.22) are Op (T
−αx) and

Op

(
T (δ̄−2αx) ln (T )

)
= op (1) respectively.

Then the third main term in (A.20) is proportional to:(
δ̂yT

)2
T (αy−1)

T−1∑
t=1

ε̃
(2)
1,t−1(δ

∗y
T )û2,t =

(
δ̂yT

)2
T (αy−1)

T−1∑
t=1

ε̃
(2)
1,t−1(δ

∗y
T )u2,t +

(
δ̂yT

)2
δ̂xTT

(αy−1)

×
T−1∑
t=1

ε̃
(2)
1,t−1(δ

∗y
T )ũ

(1)
2,t−1

1

2

(
δ̂yT

)2
(δ̂xT )

2T (αy−1)
T−1∑
t=1

ε̃
(2)
1,t−1(δ

∗y
T )ũ

(2)
2,t−2(δ

∗
T ). (A.23)

Using (A.5)-(A.6) and the Schwarz and Hölder inequalities, the three terms in (A.23) are respec-

tivelyOp

(
T (δ̄−αy)ln (T )

)
= op(1), Op

(
T (δ̄−αy−αx)ln (T )

)
= op(1), andOp

(
T (2δ̄−αy−2αx)ln (T )2

)
=

op (1).

Proof of Lemma 2.5

Since (1−L)dyt+1 = (1−L)dyyt+1+ y
∗
t where y∗t =

∑∞
j=1 ψj(1−L)dyyt+1−j and ψj = Γ(j+dy −

d)/ [Γ(dy − d)Γ(j + 1)],

2E [qt+1(b1, d, dx)] = E

[(
ε1,t+1 + y∗t + (b1 − β1)(1− L)dxxt

)2]
= E

[
ε21,t+1

]
+ E

[(
y∗t + (b1 − β1)(1− L)dxxt

)2]
> E

[
ε21,t+1

]
= 2E [qt+1(β1, dy, dx)] ,

because both y∗t and (b1 − β1)(1− L)dxxt are predetermined and thus orthogonal to ε1,t+1.
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Proof of Theorem 2.6

Define the ith derivative of β̂1(dy + δyT ) with respect to δyT , expressed as a function of δyT , as

β̂
(i)
1 (δyT ) =

(
T−1∑
t=1

[û2,t]
2

)−1 T−1∑
t=1

û2,t ln(1− L)(i)(1− L)dy+δyT yt+1.

Let ī = max(i, 1) and |δyT | < δ̄. Then using (A.18) and Lemma A.2 we have

β̂
(i)
1 (δyT ) =

(
T−1∑
t=1

[û2,t]
2

)−1 T−1∑
t=1

û2,t ln(1− L)(i)(1− L)δ
y
T (β1u2,t + ε1,t+1) (A.24)

=

(
T−1∑
t=1

[û2,t]
2

)−1 T−1∑
t=1

(
u2,t + δ̂xT ũ

(1)
2,t−1 +

1

2
(δ̂xT )

2ũ2,t−2(δ
x
T )

)(
β1ũ

(i)
2,t−i(δ

y
T ) + ε̃

(i)
1,t+1−i(δ

y
T )
)

= Op

(
ln(T )(̄i−1)T δ̄

)
Likewise, we define the special case where δyT = 0 as β̂

(i)
1 = β̂

(i)
1 (0) = Op

(
ln(T )(̄i−1)

)
. Addi-

tionally, β̂
(0)
1 (dy)− β1 = Op(T

−αx) holds by (9) and defining β
(1)
1 = γu2,u2(0)

−1(β1γ̄u2,ũ
(1)
2

(−1) +

γ̄
u2,ε̃

(1)
1

(0)), it follows from (A.7), (A.18), and (A.24) that β̂
(1)
1 = β

(1)
1 + op(1). It will also be

useful to define:

r
(i)
1,t(δ

y
T ) = ε̃

(i)
1,t+1−i(δ

y
T ) + β1ũ

(i)
2,t−i(δ

y
T )− β̂

(i)
1 (δyT )u2,t, for i = 0, 1, 2, 3 (A.25)

r
(i)
2,t(δ

y
T ) = −β̂(i)1 (δyT )(û2,t − u2,t) for i = 0, 1, 2, 3 (A.26)

r
(0)
3,t = −

(
β̂
(0)
1 − β1

)
u2,t. (A.27)

For the special case that δyT = 0, we define r
(i)
1,t = ε̃

(i)
1,t+1−i + β1ũ

(i)
2,t−i − β̂

(i)
1 u2,t and r

(i)
2,t =

β̂
(i)
1 (û2,t − u2,t).

The following convergence rates are a consequence of Lemma A.2 (and application of a

standard LLN to u2,t)

T−1∑
t=1

r
(i)
1,t(δ

y
T )r

(j)
1,t (δ

y
T ) =

T−1∑
t=1

[(
ε̃
(i)
1,t+1−i(δ

y
T ) + β1ũ

(i)
2,t−i(δ

y
T )− β̂

(i)
1 (δyT )u2,t

)
(A.28)

×
(
ε̃
(j)
1,t+1−j(δ

y
T ) + β1ũ

(j)
2,t−j(δ

y
T )− β̂

(j)
1 (δyT )u2,t

)]
= Op

(
T 1+2δ̄ ln(T )(̄i+j̄−2)

)
T−1∑
t=1

r
(i)
2,t(δ

y
T )r

(j)
2,t (δ

y
T ) = −

T−1∑
t=1

β̂
(i)
1 (δyT )β̂

(j)
1 (δyT )(δ̂

x
T ũ

(1)
2,t−1 +

1

2
(δ̂xT )

2ũ
(2)
2,t−2(δ

∗
T ))

2 (A.29)

= Op

(
T 1+2δ̄−2αx ln(T )ī+j̄−2)

)
T−1∑
t=1

r
(0)
3,t r

(0)
3,t =

(
β̂
(0)
1 − β1

)2 T−1∑
t=1

u22,t = Op(T
1−2αx). (A.30)

Plugging δ̄ = 0 into (A.28) and (A.29) gives the rates for
∑T−1

t=1 r
(i)
k,tr

(j)
k,t for k = 1, 2.

9



Noting that ε1,t+1 is a MDS and u2,t, is predetermined so that T−1/2
∑T−1

t=1 ε1,t+1u2,t converges

weakly and employing (A.15) and the results of Lemmas A.2 we also have, for any δ̄ > 0,

T−1∑
t=1

ε1,t+1r
(i)
1,t =

T−1∑
t=1

ε1,t+1

(
ε̃
(i)
1,t+1−i + β

(0)
1 ũ

(i)
2,t−i − β̂

(i)
1 u2,t

)
= Op

(
T 1/2 ln(T )(̄i−1)

)
(A.31)

T−1∑
t=1

ε1,t+1r
(i)
2,t = −β̂(i)1 δ̂xT

[
T−1∑
t=1

ε1,t+1ũ
(1)
2,t−1 + 1/2δ̂xT

T−1∑
t=1

ε1,t+1ũ
(2)
2,t−2(δ

∗
T )

]
(A.32)

= Op

(
ln(T )(̄i−1)T 1/2−αx

)
+Op

(
ln(T )īT 1+δ̄−2αx

)
= Op

(
ln(T )īT 1+δ̄−2αx

)
T−1∑
t=1

ε1,t+1r
(0)
3,t = −

(
β̂
(0)
1 − β1

) T−1∑
t=1

ε1,t+1u2,t = Op(T
1/2−αx). (A.33)

We next define et+1(b, d) = (1 − L)dyt+1 − b(1 − L)d̂xxt. Denoting, e
(i)
t+1 as the ith partial

derivative of et+1 with respect to d (evaluated at d = dy+δ
y
T ), by recursive calculation, we obtain

e
(i)
t+1

(
β̂
(i)
1 (δyT ), dy + δyT

)
= ln(1− L)(i)(1− L)dy+δyT yt+1 − β̂

(i)
1 (δyT )(1− L)d̂xxt (A.34)

=
[
ε̃
(i)
1,t+1−i(δ

y
T ) + β1ũ

(i)
2,t−i(δ

y
T )− β̂

(i)
1 (δyT )u2,t

]
− β̂

(i)
1 (δyT )

(
û2,t − u2,t

)
= r

(i)
1,t(δ

y
T ) + r

(i)
2,t(δ

y
T ) for i = 0, 1, 2, 3.

When δyT = 0 and i = 0 (A.34) further simplifies to

et+1

(
β̂
(0)
1 , dy

)
= ε1,t+1 + r

(0)
2,t + r

(0)
3,t . (A.35)

The gradient (recall that we maximize only wrt dy) is then written as

T−1/2 ▽ Q̃T (dy) = T−1/2
T−1∑
t=1

et+1

(
β̂
(0)
1 , dy

)
e
(1)
t+1

(
β̂
(1)
1 , dy

)
(A.36)

= T−1/2
T−1∑
t=1

et+1

(
β̂
(0)
1 , dy

)
r
(1)
1,t + op(1) = Op(1)

by (A.28)-(A.33) and the Cauchy-Schwarz inequality and since αx = 1/2. The requirement that

αx = 1/2 is needed to bound the summations involving r
(0)
2,t r

(1)
1,t and r

(0)
3,t r

(1)
1,t . This establishes

the approximation in (A.36), which with BT = T 1/2, satisfies conditions (i) and (ii) of (Andrews

and Sun 2004, Lemma 1).

Condition (iii) of (Andrews and Sun 2004, Lemma 1), requires, with probability approaching

one, that

B−2
T ▽2 Q̃T (dy) = T−1

T−1∑
t=1

e
(1)
t+1

(
dy, β̂

(1)
1

)2
+ T−1

T−1∑
t=1

et+1

(
dy, β̂

(0)
1

)
e
(2)
t+1

(
dy, β̂

(2)
1

)
(A.37)
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be bounded above zero. The second term on the RHS of (A.37) is op(1) since, substituting

(A.34) and (A.35),

T−1
T−1∑
t=1

et+1

(
dy, β̂

(0)
1

)
e
(2)
t+1

(
dy, β̂

(2)
1

)
= T−1

T−1∑
t=1

(
ε1,t+1 + r

(0)
2,t + r

(0)
3,t

)
×
(
r
(2)
1,t + r

(2)
2,t

)
= op(1)

(A.38)

by (A.28)-(A.33). Using (A.34) to substitute for e
(1)
t+1

(
dy, β̂

(1)
1

)2
by (A.28)-(A.29),

T−1
T−1∑
t=1

e
(1)
t+1

(
dy, β̂

(1)
1

)2
= T−1

T−1∑
t=1

(
r
(1)
1,t + r

(1)
2,t

)2
= T−1

T−1∑
t=1

(
r
(1)
1,t

)2
+ op(1). (A.39)

Using20 γ̄r1,r1(0) = limT→∞ T−1
∑T

t=1E
[
r21,t
]
= limT→∞ T−1

∑T
t=1E

[(
ε̃
(1)
1,t + β1ũ

(1)
2,t−1 − β

(1)
1 u2,t

)2]
,

T−1
T−1∑
t=1

(
r
(1)
1,t

)2
= T−1

T∑
t=1

[(
ε̃
(1)
1,t + β1ũ

(1)
2,t−1 − β

(1)
1 u2,t

)2]
+op(1) = γ̄r1,r1(0)+op(1) > 0+op(1)

(A.40)

using (A.25) to substitute for r1,t and where the convergence to γ̄r1,r1(0) is established by applying

(A.7) to each of the six constituent summands (i.e. T−1
∑T

t=1(ε̃
(1)
1,t )

2, T−1
∑T

t=1 ε̃
(1)
1,t ũ

(1)
2,t−1, . . .,

T−1
∑T

t= u
2
2,t). The inequality is strict since the possibility that ε̃

(1)
1,t +β1ũ

(1)
2,t−1−β

(1)
1 u2,t = 0 a.s.

is ruled out by (3) and (4). Combining (A.38)-(A.40),

B−2
T ▽2 Q̃T (dy) = γ̄r1,r1(0) + op(1) > 0 + op(1), (A.41)

which establishes condition (iii) of (Andrews and Sun 2004, Lemma 1).

For (iv), let KT = ln(T ) → ∞ as T → ∞ (note that condition (iv) is required to hold only

for some sequence KT → ∞) and let δ̄ > 0 and ϵ > 0 be selected such that 2δ̄ + ϵ < 1/2. Then

by an exact Taylor expansion of ▽2Q̃T (dy + δyT ) about dy

sup
|δyT |<T−1/2KT

T−1
(
▽2Q̃T (dy + δyT )−▽2Q̃T (dy)

)
= sup

|δyT |<T−1/2KT

T−(1+2δ̄+ϵ)▽3Q̃T (dy+δ
y
T )T

2δ̄+ϵδ∗yT

(A.42)

where δ∗yT lies between 0 and δyT . Then sup|δyT |<T−1/2KT
T 2δ̄+ϵ|δ∗yT | ≤ sup|δyT |<T−1/2KT

T 2δ̄+ϵ|δyT | =
T 2δ̄+ϵ−1/2KT = o(1) by assumption. It remains to be shown that sup|δyT |<T−1/2KT

T−(1+2δ̄+ϵ) ▽3

Q̃T (dy + δyT ) = Op(1). The restriction |δyT | < T−1/2Kt implies that |δyT | < δ̄ will be satis-

fied for T sufficiently large that T ln(T )−2 > δ̄−2. Therefore it will be sufficient to show that

sup|δyT |<δ̄ T
−(1+2δ̄+ϵ) ▽3 Q̃T (dy + δyT ) = Op(1). The third derivative in (A.42) is given by

B−2
T ▽3 Q̃T (dy + δyT ) = 3T−1

T−1∑
t=1

e
(1)
t+1

(
dy + δyT , β̂

(1)
1 (δyT )

)
e
(2)
t+1

(
dy + δyT , β̂

(2)
1 (δyT )

)
(A.43)

+ T−1
T−1∑
t=1

et+1

(
dy + δyT , β̂

(0)
1 (δyT )

)
e
(3)
t+1

(
dy + δyT , β̂

(3)
1 (δyT )

)
.

20Here and in the equation below, we use the consistency of β̂
(1)
1 for β

(1)
1 .
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Using (A.34), the supremum of the top line of (A.43) is given by

sup
|δyT |<δ̄

3T−(1+2δ̄+ϵ)
T∑
t=1

(
r
(1)
1,t (δ

y
T ) + r

(1)
2,t (δ

y
T )
)(

r
(2)
1,t (δ

y
T ) + r

(2)
2,t (δ

y
T )
)
= Op

(
T−ϵ ln(T )

)
= op(1),

where the order follows from (A.28)-(A.29) and (A.31)-(A.32). Similarly, from (A.34) the supre-

mum of the bottom line of (A.43) is given by

sup
|δyT |<δ̄

T−(1+2δ̄+ϵ)
T−1∑
t=1

(
r
(0)
1,t (δ

y
T ) + r

(0)
2,t (δ

y
T )
)(

r
(3)
1,t (δ

y
T ) + r

(3)
2,t (δ

y
T )
)
= Op

(
T−ϵ ln(T )2

)
= op(1),

where the order follows by (A.28)-(A.29). Therefore the RHS of (A.42) is op(1), which establishes

condition (iv) of (Andrews and Sun 2004, Lemma 1). The stated result then follows from the

application of their Lemma.

Proof of Corollary 2.7

d̂y →p dy as an immediate consequence of Theorem 2.6. (1−L)dyyt+1 in (10) is an I(0) dependent

variable, analogous to yt+1 in (1). Thus as a consequence of Theorem 2.1 (here (1 − L)dyyt+1

replaces yt+1 in the proof) β̂1(dy, d̂x) →p β1. Then since d̂y →p dy, by the continuous mapping

theorem β̂1(d̂y, d̂x) →p β1.

Proof of Theorem 2.8

Define δ̂yT = d̂y − dy and let δ̄ > 0. Due to the consistency of both d̂y and d̂x, we may assume

|δ̂yT |, |δ̂xT | < δ̄ without loss of generality using the same arguments given below (A.13). Similarly

to (A.15)

(1− L)δ̂
y
T u2,t1{t>0} = u2,t1{t>0} + δ̂yT ũ

(1)
2,t−1 +

1

2
(δ̂yT )

2ũ
(2)
2,t−2(δ

∗
T ) and (A.44)

(1− L)δ̂
y
T ε1,t+11{t>0} = ε1,t+11{t>0} + δ̂yT ε̃

(1)
1,t +

1

2
(δ̂yT )

2ε̃
(2)
1,t−1(δ

∗
T )

using the definitions in Lemmas A.1 and A.2 where δ∗T lies between 0 and δ̂yT . By Theorem 2.6

T 1/2δ̂yT = −
(
T−1 ▽2 Q̃T (dy)

)−1
T−1/2 ▽ Q̃T (dy) (A.45)

= −γ̄
r
(1)
1 ,r

(1)
1

(0)−1T−1/2
T−1∑
t=1

et+1

(
β̂
(0)
1 , dy

)
r
(1)
1,t + op(1) = Op(1),

where r
(i)
1,t is defined in (A.25) and using the definitions of Lemma A.2. The final result in

(A.45) follows by (A.36), and (A.41). Note that when β1 = 0, γ̄
r
(1)
1 ,r

(1)
1

(0) = γ̄
ε̃
(1)
1 ,ε̃

(1)
1

(0) −

2β
(1)
1 γ̄

u2,ε̃
(1)
1

(0) + (β
(1)
1 )2γu2,u2(0).

12



From (18), using (10) to substitute for yt+1, we have (suppressing the indicator function)

β̂1(d̂y) =

(
T−1∑
t=1

û22,t

)−1 T−1∑
t=1

û2,t(1− L)d̂yyt+1 =

(
T−1∑
t=1

û22,t

)−1 T−1∑
t=1

û2,t(1− L)δ̂
y
T ([β1u2,t + ε1,t+1])

= β1 +

(
T−1∑
t=1

û22,t

)−1 T−1∑
t=1

[
β1û2,t

(
(1− L)δ̂

y
T u2,t − û2,t

)
+ û2,t(1− L)δ̂

y
T ε1,t+1

]
. (A.46)

Similarly to (A.13), (A.46) can be rearranged as

√
T (β̂1(d̂y)− β1) =

(
T−1

T−1∑
t=1

û22,t

)−1(
T−1/2

T−1∑
t=1

û2,t(1− L)δ̂
y
T ε1,t+1 (A.47)

+ β1T
−1/2

T−1∑
t=1

û2,t

[
(1− L)δ̂

y
T u2,t − û2,t

])
.

The denominator of (A.47) is given by (A.18). For the second term in the numerator of (A.47),

using (A.15) and (A.44) to substitute for û2,t and (1− L)δ̂
y
T ε1,t+1 respectively,

T−1/2
T−1∑
t=1

û2,t(1− L)δ̂
y
T ε1,t+1 = T−1/2

T−1∑
t=1

(
u2,t + δ̂xT ũ

(1)
2,t−1 +

1

2
(δ̂xT )

2ũ
(2)
2,t−2(δ

∗
T )

)
(A.48)

×
(
ε1,t+1 + δ̂yT ε̃

(1)
1,t +

1

2
(δ̂yT )

2ε̃
(2)
1,t−1(δ

∗
T )

)
= T−1/2

T−1∑
t=1

u2,t

(
ε1,t+1 + δ̂yT ε̃

(1)
1,t

)
+ op(1),

where T−1/2
∑T−1

t=1

(
δ̂xT ũ

(1)
2,t−1 +

1
2(δ̂

x
T )

2ũ
(2)
2,t−2(δ

∗
T )
)
ε1,t+1 = op(1), by (A.17), and the remaining

orders follow by Lemma A.2, using the Cauchy-Schwarz and Hölder inequalities, since δ̂yT =

Op(T
−1/2) by (A.45) and δ̂xT = Op(T

−1/2) by assumption. Using Lemma A.2, (A.48) further

simplifies to

T−1/2
T−1∑
t=1

û2,t(1− L)δ̂
y
T ε1,t+1 = T−1/2

T−1∑
t=1

ε1,t+1u2,t + γ̄
u2,ε̃

(1)
1

(0)T 1/2δ̂yT + op(1). (A.49)

Next, use (A.45) to substitute for δ̂yT and re-arrange to obtain

T−1/2
T−1∑
t=1

û2,t(1− L)δ̂
y
T ε1,t+1 = T−1/2

T−1∑
t=1

(
ε1,t+1u2,t − γ̄

u2,ε̃
(1)
1

(0)(γ̄
r
(1)
1 ,r

(1)
1

(0))−1et+1

(
β̂
(0)
1 , dy

)
r
(1)
1,t

)
+ op(1).

Using (A.35) to substitute for et+1

(
β̂
(0)
1 , dy

)
= ε1,t+1+ r

(0)
2,t + r

(0)
3,t and further re-arranging gives

T−1/2
T−1∑
t=1

û2,t(1− L)δ̂
y
T ε1,t+1 = T−1/2

T−1∑
t=1

ε1,t+1

(
u2,t − γ̄

u2,ε̃
(1)
1

(0)(γ̄
r
(1)
1 ,r

(1)
1

(0))−1r
(1)
1,t

)
(A.50)

−γ̄
u2,ε̃

(1)
1

(0)(γ
r
(1)
1 ,r

(1)
1

(0))−1T−1/2
T−1∑
t=1

(
r
(0)
2,t + r

(0)
3,t

)
r
(1)
1,t .

13



Note that from the definition in (A.26) we have, using Theorem 2.1,21 Lemma A.2, (A.15), and

(A.28)-(A.29),

−T−1/2
T−1∑
t=1

r
(0)
2,t r

(1)
1,t = β1T

−1/2
T−1∑
t=1

r
(1)
1,t (û2,t − u2,t) + op(1) (A.51)

= β1T
−1/2

T−1∑
t=1

r
(1)
1,t

(
δ̂xT ũ

(1)
2,t−1 +

1

2
(δ̂xT )

2ũ
(2)
2,t−2(δ

∗
T )

)
+ op(1) = β1Op(1) + op(1).

Noting the definitions in (A.25) and (A.27) and using (9) (recall here αx = 1/2),

−T−1/2
T−1∑
t=1

r
(0)
3,t r

(1)
1,t =

(
β̂
(0)
1 − β1

)
T−1/2

T−1∑
t=1

u2,t

[
ε̃
(1)
1,t + β1ũ

(1)
2,t−1 − β̂

(1)
1 u2,t

]
(A.52)

= T 1/2
(
β̂
(0)
1 − β1

) [
γ̄
u2,ε̃

(1)
1

(0)− β
(1)
1 γu2,u2(0)

]
+ β1Op(1) + op(1)

= β1Op(1) + op(1)

since β
(1)
1 = γu2,u2(0)

−1
(
β1γ̄ũ(1)

2 ,u2
(1) + γ̄

u2,ε̃
(1)
1

(0)
)
(see the discussion above (A.25)).

Therefore when β1 = 0, the limiting distribution of the numerator is only affected by the top

line of (A.50), for which

T−1/2
T−1∑
t=1

ε1,t+1

(
u2,t − γ̄

u2,ε̃
(1)
1

(0)(γ̄
r
(1)
1 ,r

(1)
1

(0))−1r
(1)
1,t

)
= T−1/2

T−1∑
t=1

ε1,t+1ξt + op(1) (A.53)

→d N (0, γ̄ξ,ξ(0)Σ1,1))

where we define ξt = u2,t − γ̄
u2,ε̃

(1)
1

(0)γ̄
r
(1)
1 ,r

(1)
1

(0)−1r
(1)
1,t . Next, by (Gradstein and Ryzhik 1994,

eqn. 0.121) and Toeplitz Lemma we may reexpress

γ̄
ε̃
(1)
1 ,ε̃

(1)
1

(0) = Σ1,1
π2

6
. (A.54)

Noting that when β1 = 0, r
(1)
1,t = ε̃

(1)
1,t − β̂

(1)
1 u2,t and β

(1)
1 = β1 + op(1) = γu2,u2(0)

−1γ̄
u2,ε̃

(1)
1

(0) +

op(1),

γ̄
u2,r

(1)
1

= γ̄
u2,ε

(1)
1

(0) − β
(1)
1 γu2,u2(0) = 0 and (A.55)

γ̄r1,r1(0) = γ̄
ε̃
(1)
1 ,ε̃

(1)
1

(0)− 2β
(1)
1 γ̄

u2,ε̃
(1)
1

(0) + (β
(1)
1 )2γu2,u2(0) (A.56)

= γ̄
ε̃
(1)
1 ,ε̃

(1)
1

(0)− γu2,u2(0)
−1γ̄

u2,ε̃
(1)
1

(0)2

implying that

γ̄ξ,ξ(0) = limT→∞T
−1

T∑
t=1

E
[
ξ2t
]
= γu2,u2(0) + γ̄

r
(1)
1 ,r

(1)
1

(0)−1γ̄
u2,ε̃

(1)
1

(0)2 (A.57)

= γu2,u2(0) +

(
Σ1,1

π2

6
γ̄
u2,ε̃

(1)
1

(0)−2 − γu2,u2(0)
−1

)−1

.

21Since β̂1 is an implicit function of the true value of dy the consistency result from Theorem 2.1 implies that

β̂1 = β1 + op(1).
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Since Etε1,t+1 = 0 and ξt is realized at time t, ε1,t+1ξt is a MDS. The central limit theorem

therefore follows by Davidson (2000, Theorem 6.2.3, p. 124), giving
√
T
(
β̂1(d̂y)− β1

)
→d

N (0, V ) where V = γu2,u2(0)
−2γ̄ξ,ξ(0)Σ1,1 = Σ1,1

[
γu2,u2(0)− 6

π2Σ
−1
1,1γ̄u2,ε̃

(1)
1

(0)2
]−1

.

Proof of Corollary 2.9

The stated results follows from Theorem 2.8 after establishing the convergence of the sample

analogs to their population counterparts. In what follows below, we provide the argument for the

convergence of T−1
∑T−1

t=1 (ε̂
(1)
1,t )

2 to γ̄
ε̃
(1)
1 ,ε̃

(1)
1

(0). The convergence of the remaining terms follow

by similar argument and are omitted to conserve space. Using (10) to substitute for (1−L)dyyt+1

under H0 : β1 = 0, we have

ε̂1,t+1 = ε̃
(1)
1,t+1(δ̂

y
T )− β̂1 ln(l − L)û2,t,

where δ̂yT = d̂y − dy and ε̃
(1)
1,t+1 is defined as in Lemma A.1. Applying ln(1− L) to both sides of

an expansion analogous to (A.14), we obtain

ε̃
(1)
1,t+1(δ̂

y
T ) = ε̃

(1)
1,t + δ̂yT ε̃

(2)
1,t−1 + 1/2(δ̂yT )

2ε̃
(3)
1,t−2(δ

∗
T ),

with |δ∗T | < δ̂yT . By (A.7) T−1
∑T−1

t=1 (ε̃
(1)
1,t+1)

2 →p γ̄ε̃(1)1 ,ε̃
(1)
1

(0). It remains to show that the other

terms are of lower order. Noting that δ̂yT = Op(T
−1/2) by (A.45), it follows from rate results of

Lemma A.2 that

T−1
T−1∑
t=1

ε̃
(1)
1,t+1(δ̂

y
T )

2 = T−1
T−1∑
t=1

(ε̃
(1)
1,t+1)

2 + op(1).

Next, applying ln(1− L) to (A.14)

ln(1− L)û2,t = ũ
(1)
2,t−1 + δ̂xT ũ

(2)
2,t−2 + 1/2(δ̂xT )

2ũ
(3)
2,t−3(δ

∗
T ),

with |δxT | < δ̂xT . Then, since β̂1 →p β1 = 0 and δ̂xT = Op(T
−1/2) by assumption, and again using

the results of Lemma A.2, it is straightforward to show that

T−1
T−1∑
t=1

ε̂2t = T−1
T−1∑
t=1

ε̃
(1)
1,t+1(δ̂

y
T )

2 + op(1).
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