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Abstract

The observed persistence common in economic time series may arise from a va-
riety of models that are not always distinguished with confidence in practice,
yet play an important role in model specification and second stage inference
procedures. Previous literature has introduced causality tests with conventional
limiting distributions in I(0)/I(1)VAR models with unknown integration orders,
based on an additional surplus lag in the specification of the estimated equation,
which is not included in the tests. Building on this approach, but using an in-
finite order VARX framework, we provide a highly persistence-robust Granger
causality test that accommodates i.a. stationary, nonstationary, local-to-unity,
long-memory, and certain (unmodelled) structural break processes in the forcing
variables within the context of a single χ2 null limiting distribution. Since the
distribution under the null hypothesis is the same in all cases, no prior knowl-
edge, or first-stage testing or estimation is required and known lag orders are
not assumed.
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1 Introduction

Since its introduction in Granger (1969), tests of Granger noncausality have become
ubiquitous in economics, with applications ranging from the causal relation between
money and output (Friedman and Kuttner, 1992) to the export led growth hypothesis
(Marin, 1992). This paper develops a simple but flexible augmented VARX approach
to Granger causality testing that is highly robust to the degree and nature of the
persistence in the causing variables. In particular, the same estimator and test statistic
may be employed to test causality,1 regardless of whether the true, but unknown,
data generating process for the causal variable is characterized by stationarity, long-
memory/fractional integration, a local-to-unity process, I(1) behavior, or breaks in the
mean of the process. Consequently no prior knowledge, pre-estimation, or pre-test is
required. Likewise, known lag orders are not assumed. Since the Granger causality
test is based on the same Wald statistic and Chi-squared limiting distribution in all
five cases, no prior knowledge, estimation, or testing is required to distinguish between
these processes.

These are desirable characteristics for several reasons. Frequently it is difficult
to determine the degree and nature of the persistence of the forcing variables with
full confidence. This can often matter in both theory and practice for second stage
model specification and inference. Likewise, recent developments in the cointegration
literature have also stressed the importance of allowing for fractional integration2 and
near unit roots (Jansson and Moreira, 2006). In fact, two of the most recent studies
(Phillips, 2005; Muller and Watson, 2007), emphasize agnostic approaches to the form
of this persistence, motivated by robustness concerns similar in spirit to ours.

The difficulties associated with distinguishing I(1) and I(0) processes are well
known. In short, unit root tests may have low power, confidence intervals on the
largest root are often wide in practice, and problems of near observational equivalence
put bounds on our ability to distinguish between true I(1) series and persistent I(0) se-
ries in finite sample (Faust, 1996; Faust, 1999). Moreover, for many purposes, processes
with near unit roots may be better modelled as local-to-unity processes, which depend
on a local-to-unity parameter, which cannot be consistently estimated in a time series
context (Phillips, 1987; Chan, 1988; Nabeya and Sørensen, 1994).These problems may
be further complicated with the allowance for structural breaks, in which numerous
modelling possibilities arise, unit root tests become more complicated, and the simi-
larity between break-stationary and unit root processes increases with the number of
breaks. Recent literature has also highlighted the difficulties in distinguishing between
structural breaks and long-memory/fractionally integrated processes (Diebold and In-
oue, 2001; Gourieroux and Jasiak, 2001; Granger and Hyung, 2004). Thus while it
is often easy to recognize that a given series is persistent, it can be far more difficult
to determine with confidence the right approach for modelling this persistence. As

1We address only Granger’s version of causality, despite the importance of several other definitions.
2(Jeganathan, 1999; Robinson and Marinucci, 2003; Robinson and Hualde, 2003; Kim and Phillips,

2004; Hualde, 2006; Hualde and Robinson, 2007, among others).
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Phillips (2003, p. C35) puts it “no one really understands trends, even though most of
us see trends when we look at economic data.”

These distinctions are important to model specification. A typical VAR may be
specified in levels if unit roots are rejected, in first-differences if the variables are
individually integrated but not cointegrated, and in error-correction format if the vari-
ables are cointegrated. Likewise, structural breaks require explicit modelling and long-
memory processes are not easily accommodated in a VAR setting. Such choices can
have important practical implications. A recent controversial example involves the
role of technology shocks in macroeconomic models, for which VARs provide evidence
consistent with New Keynesian models if hours worked is treated as nonstationary and
enters in differences (Gali, 1999) but supports instead the conclusions of standard Real
Business Cycle models when the same variable is presumed stationary and enters in
levels (Christiano et al., 2003).

The persistence of the causing variable also matters for second-stage inference.
Even in simple regression models, different critical values may apply depending on
whether or not the regressor contains a unit root. Moreover, both stationary and unit
root asymptotics can be misleading in the presence of near unit roots when roots are
close, but not equal, to unity, as often modelled by the near unit root local-to-unity
model mentioned above (Cavanagh et al., 1995; Elliott, 1998). Such inference problems
may be further complicated once one allows more realistically for the possibility of
structural breaks or long-memory processes. They also matter in practical applications
and have played a particularly important role in the predictive regression literature,
including tests of stock return predictability (Stambaugh, 1999; Lewellen, 2004; Torous
et al., 2005), the expectations hypothesis of the term structure (Lanne, 2002), and
uncovered interest rate parity (Baillie and Bollerslev, 2000; Maynard and Phillips,
2001), all of which constitute special cases of Granger causality testing.

Our approach builds on a rich literature, the original insights for which derive from
the work of Park and Phillips (1989) and Sims et al. (1990). Their results imply that,
despite the nonstandard asymptotics in I(1) /cointegrated systems, parameters that
may be expressed as coefficients on stationary regressors retain a standard root-T nor-
mal asymptotic distribution. Similar results have also been found to hold in cointegrat-
ing systems involving nonstationary fractional integration (Dolado and Marmol, 2004).
The surplus lag approach uses this result to simplify inference. In the context of unit
root testing, Choi (1993) recognized that, with the addition of an extra, unnecessary
lag, the autoregressive model could be rewritten so that all the parameters of interest
are expressed as coefficients on stationary transformations of the data. Thus, at some
cost, in terms of efficiency, inference procedures could be simplified, via the avoidance
of nonstandard distributions. Toda and Yamamoto (1995), and Dolado and Lütkepohl
(1996) showed how the same surplus lag approach could be applied to provide inference
in finite order vector autoregression, without knowing which components are station-
ary and which have unit roots. Saikkonen and Lütkepohl (1996) extended these results
to infinite order VARs.

This approach is very flexible with respect to inference in general I(0)/I(1) and coin-

3



tegrated models. On the other hand, the pure VAR framework adopted in these surplus
lag methods cannot accommodate long-memory, nor can it accommodate breaks un-
less they are explicitly modelled. Yet, since breaks are often tested for in conjunction
with unit roots, the requirement that they be specifically modelled detracts some-
what from the advantageous features of the surplus lag approach. By incorporating
an exogenously modelled component, we may accommodate a richer class of persis-
tent processes for the forcing variable in the VARX framework, including those with
long-memory/fractionally integration or unmodelled structural breaks. Moreover, we
find that with the incorporation of the surplus lag, the null limit distribution con-
tinues to be unaffected by the particular form of this persistence. Likewise, these
results are not dependent on knowledge of the correct lag orders. In all cases, we allow
for infinite lag orders under the null hypothesis, approximated by finite order models
whose lag lengths increase with sample size. Thus our results also build on the liter-
ature on reasonable approximability (Berk, 1974; Lewis and Reinsel, 1985; Lütkepohl
and Saikkonen, 1997) and provide some extensions to allow for exogenous regressors,
including those with long-memory, and certain structural breaks. Some related exten-
sions are provided by Poskitt (2007), who establishes autoregressive approximations
to (univariate) non-invertible and stationary long-memory processes.

The simplicity and generality of the surplus lag approach does not come without
cost. Naturally, the addition of an extra unnecessary lag reduces the efficiency of es-
timation, thereby leading to reduced power relative to a correctly specified model.
However, as previous literature reports, the magnitude of this effects varies con-
siderably. Power losses are greatest in unit root and cointegration tests, in which
super-consistency and thus power against O(T−1) alternatives is lost. Generally, the
surplus lag is not recommended in this case, even by its proponents (Toda and Ya-
mamoto, 1995; Saikkonen and Lütkepohl, 1996).3 However, efficiency losses are often
far more moderate in type of the Granger causality tests considered here, particularly
when the baseline model already includes a number of lags, as in common macroeco-
nomic applications. Therefore the excess lag approach provides a persistence-robust
complement to, but not a substitute for, more efficient testing procedures.4

In the I(0)/I(1) context there arguably exist alternative methods that are as general,
but more efficient, than existing results for the VAR-based surplus lag method. When
the number of cointegrating vectors and orders of integration is known, error correction
models provide a natural context for efficient causality testing, although in practice
pre-tests are required (Toda and Phillips, 1993). The fully modified VAR estimation
(Phillips, 1995; Kitamura and Phillips, 1997) is also efficient and shares the advantage
of not requiring a priori knowledge on the number of I(0) and unit root components.
Fully modified regression can also be extended to cover fractional cointegration (Kim
and Phillips, 2004). Nevertheless, most efficient tests designed for the I(0)/I(1) case

3The surplus lag approach may also be unsuited to applications, such as forecasts for the persistent
variable itself, in which explicit modelling of the low-frequency behavior is unavoidable.

4For the applied researcher, our approach should be particularly useful in confirming the robustness
of rejections, whereas some caution should be applied in interpreting a failure to reject.
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require adjustment in the presence of either near unit roots (Elliott, 1998) or fractional
integration, whereas we show that, in the VARX context, the same surplus lag test
continues to work without adjustment in both cases.

A second limitation of our approach is that we allow for long-memory in the forcing
processes but not the error process for the dependent variables. The difficulty of
weakening this assumption for time domain estimators is discussed in (Hidalgo, 2000;
Hidalgo, 2005), who provides frequency based non-parametric causality tests, which
allow for long-memory in both. On the other hand, these tests require covariance
stationarity, ruling out many of the interesting cases considered here.

A second limitation of the surplus lag approach is that, like many econometric
estimators, it provides only correct large sample, not finite sample size. In a simple bi-
variate predictive regression context, sign and sign rank tests are both non-parametric
and exact in finite samples, thus providing a very attractive alternative (Campbell
and Dufour, 1997). Unfortunately, they do not easily generalize to more complicated
models. As recent work has demonstrated (Dufour and Jouini, 2005), Monte-Carlo
methods may also be employed to provide finite sample inference even in quite com-
plicated parametric models. In principle, the generality of this approach is limited
only by its computational complexity. On the other hand, the econometrician must
simulate from all possible parametric models for the forcing variable, a set which may
become increasingly large once we consider the possibility of long-memory and breaks.
Moreover, the fact that exactly the same VARX based surplus lag test statistic works
without modification in all the standard cases considered here hints at the possibil-
ity that the technique may work for a much wider class of processes. This may be an
appealing aspect to those who suspect that the true mechanisms generating the persis-
tence in the data are likely more sophisticated than the econometric models typically
employed to capture them (Phillips, 2003, for example).

The remainder of the paper is organized as follows. Section 2 presents the model
and explains the basic intuition behind our results. Section 3 presents the large sample
results, showing that the VARX based excess lag Wald statistic has the same null
limiting Chi-squared distribution for a variety of forcing processes. Section 4 provides
some simulation results on the finite sample size and power of the test. Appendix A
collects some technical results and the proofs of the main theorems are provided in
Appendix B. The tables and figures are included at the back of the paper.

Finally, a word on notation. Lag orders are given by p and dimensions are given by
k. Capital letters denote regression matrices. Variables with time subscripts are lower
case. A variable with a minus sign in the superscript (e.g. x−

t ) includes all relevant lags.
The dependent variable is denoted by yt, the variables about which Granger causality
is tested are often written in terms of xt when referring to particular applications, but
as z1t for the theoretical results, and any additional control variables are included as
z2t. We define || · ||2 as the Euclidean norm ‖x‖2 =

√
x′x, when applied to the vector

x and as the induced matrix norm max {‖Ax‖2 : x(n × 1), ‖x‖2 = 1} when applied to
the m × n matrix A.
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2 The model

Throughout this paper we consider three basic variables: by yt we denote a ky vector
of dependent variables, by z1t we denote a kz1 vector of exogenously modelled forcing
variables, and z2t denotes an optional kz2 vector of endogenously modelled control
variables.

We consider tests of the null hypothesis that z1t does not Granger cause yt after
controlling for z2t.

5 Let Ft,y,z1,z2 define the information set generated by the past
history of all three variables (i.e. by

{
(y′

t−j, z
′
1t−j, z

′
2t−j)

′, j ≥ 0
}

). Likewise, let Ft,y,z2

denote the information set generated by the past history of the endogenous variables
only, (i.e. by

{
(y′

t−j, z
′
2t−j)

′, j ≥ 0
}
). Then we test the Granger noncausality condition

E [yt|Ft−1,y,z1,z2] = E [yt|Ft−1,y,z2] . (1)

In practice this hypothesis is often tested by means of parameter restrictions on a
joint VAR involving all three variables. However, our interest lies in cases in which the
forcing variable z1t displays persistent behavior, which may potentially be modelled
in a variety of different ways. In this context, the pure VAR may be too restrictive.
To maintain flexibility, the forcing variable z1t is instead exogenously modelled in the
sense that we do not explicitly model its possible dependence on past yt−j and z2t−j.
This allows us to consider a number of alternative data generating processes for z1t on
a case by case basis, including I(0), I(1), local-to-unity, stationary and nonstationary
long-memory processes, and processes with structural breaks. We will defer discussion
of the exact modelling assumptions on z1t to Section 3. However, it should be noted
that although z1t is exogenously modelled, it is not assumed to be strictly exogenous
in a statistical sense. The innovations in the process for z1t may correlate with the
past innovations to yt and z2t.

We maintain more traditional assumptions regarding the behavior of the endoge-
nously modelled variables. Under the null hypothesis the true joint DGP for wt :=
[y′

t, z
′
2t]

′ will be assumed to be approximable by a VAR model, i.e. we assume that

wt =
∞∑

j=1

πwjwt−j + εt (2)

where (εt)t∈Z is a martingale difference sequence (MDS; for detailed assumptions see
Section 3).

In practice, the infinite order VAR in (2) is approximated using a finite autoregres-
sion. Our primary interest lies in the process for yt, which is approximated by

yt =

p∑
j=1

(πyjyt−j + πz2jz2t−j) + εyt,p. (3)

5While z2t is optional, the results of Dufour and Renault (1998) underline its potential importance.

6



In order to consider linear alternatives to Granger noncausality, we must also include
lags of z1t in the empirical specification. Thus, we estimate the VARX model6

yt =

p∑
j=1

(ψyjyt−j + ψz2jz2t−j) +

pz1+1∑
j=1

ψz1jz1t−j + εyt,p (4)

and test the joint parameter restriction ψz1j = 0 for 1 ≤ j ≤ pz1 using a standard
Wald test.

The estimated model includes a surplus lag of the forcing variable, z1t−pz1−1, which
is not tested. The role of the surplus lag becomes apparent after reparameterizing (4)
as

yt =

p∑
j=1

(ψyjyt−j+ψz2jz2t−j)+

pz1∑
j=1

ψz1j (z1t−j − z1t−pz1−1)+

(
pz1+1∑
j=1

ψz1j

)
z1t−pz1−1+εyt,p.

(5)
When z1t is integrated of order less than 1.5 the parameters restricted under the null
hypothesis (i.e. ψz1j for 1 ≤ j ≤ pz1) are expressed as the coefficients on the covariance
stationary variables z1t−j − z1t−pz1−1 (recall that pz1 is fixed) and may be shown to
follow a joint normal limiting distribution under suitable conditions. For instance,
when z1t is I(1) it well known that they have a

√
T convergence rate and joint normal

limiting distribution (Park and Phillips, 1989; Sims et al., 1990). If the integration
order of z1t were to exceed 1.5, e.g. z1t ∼ I(2), a second surplus lag would be required.
However, we do not consider this possibility.

The choice of pz1, the lag order of z1t, will generally influence the power of the test,
but not its large sample size. In particular, the test has power against a more general
set of alternatives for large pz1, but has greater power against simpler alternatives,
when the lag-length is small. Also, pz1 need not be set equal to p, the lag order of
wt. This is another way in which the VARX provides additional flexibility. Even if
modelling z1t requires many lags, e.g. if z1t has long-memory, it may still be possible to
model wt parsimoniously. Likewise, in the pure VAR framework we require a surplus
lag of all variables, whereas in the VARX we require only an extra lag of z1t. This may
improve efficiency, particularly when the number of lags is small, but the dimension
of wt is large.

In order to rewrite (4) in compact form define y−
t := [y′

t−1, . . . , y
′
t−p]

′, z−2t :=
[z′2t−1, . . . , z

′
2t−p]

′, ψy := [ψy1, . . . , ψyp], ψz2 := [ψz21, . . . , ψz2p], and z−1t := [z′1t−1, . . . , z
′
1t−pz1

]′,
so that εyt,p = yt − ψyy

−
t − ψz2z

−
2t. We define by x−

1t = z−1t the regressors whose co-
efficients ψx1 are to be tested. The remaining regressors, including the surplus lag,
are then grouped together as x−

2t := [(y−
t )′, (z−2t)

′, (z1t−pz1−1)
′]′. Thus, the estimated

equation in (4) may be rewritten in single equation form as

yt = ψx1x
−
1t + ψx2x

−
2t + εyt,p (6)

6When the null hypothesis holds ψyj = πyj and ψz2j = πz2j .

7



where ψx1 ∈ Rky×pz1kz1 and ψx2 ∈ Rky×(kyp+kz2p+kz1) or in stacked form as

Y = X1ψ
′
x1 + X2ψ

′
x2 + Ep, (7)

where Y =
[

y−
pmax+1, . . . , y−

T

]′
, for pmax = max{p, pz1 + 1}, and X1, X2, and Ep

stack x−
1t, x−

2t and ε−yt,p in identical fashion.
The null hypothesis of no-Granger causality is then H0 : ψx1 = 0 and the alternative

hypothesis is HA : ψx1 6= 0. Defining X1.2 = X1−X2(X
′
2X2)

−1X ′
2X1, with rows denoted

by
(
x−

1.2t

)′
, as the residual from the projection of X1 on X2, we estimate the parameter

of interest ψx1 by ψ̂x1 = Y ′X1.2 (X ′
1.2X1.2)

−1 and the variance of vec
(
ψ̂x1

)
is estimated

in the standard way by

Σ̂x1 :=
(
(X ′

1.2X1.2)
−1 ⊗ Σ̂ε

)
,

for Σ̂ε := 1
T
Ê ′

pÊp, with the rows of Êp given by ε̂′yt,p for ε̂yt,p := yt − ψ̂x1x
−
1t − ψ̂x2x

−
2t.

7

The standard Wald test for ψx1 = 0 then takes the form:

Ŵ := vec(ψ̂x1)
′Σ̂−1

x1 vec(ψ̂x1) = vec(Y ′X1.2)
′
(
(X ′

1.2X1.2)
−1 ⊗ Σ̂−1

ε

)
vec(Y ′X1.2). (8)

In the section below, we show that under suitable regularity conditions Ŵ has a χ2

null limiting distribution for a wide variety of data generating processes under which
z1t may exhibit persistent behavior.

3 Large sample robustness results

In this section we show that the Wald statistic Ŵ for a test of Granger noncausality
in the surplus lag VARX obeys a standard Chi-squared null limiting distribution un-
der a variety of assumptions regarding the nature of the persistence in z1t. We begin
by stating the assumptions on the innovation process for the endogenous variables wt

specified in (2):8

Assumption N: The noise (εt)t∈Z is a strictly stationary ergodic martingale dif-
ference sequence adapted to the increasing sequence of sigma algebras Ft generated by
εt, εt−1, . . .. Further assume that E{εtε

′
t|Ft−1} = Eεtε

′
t = Σ > 0 and that E{εt,aεt,bεt,c|Ft−1} =

ωa,b,c (constant) where εt,a denotes the a-th coordinate of the vector εt. Finally finite
fourth moments are assumed: E{ε4

t,i} < ∞.
Many of the results presented below may be proved under more general assumptions on
the innovations. In particular, finite fourth moments are often unnecessary. However,
the above assumptions are standard in VAR models (Saikkonen and Lütkepohl, 1996,
use similar but stronger assumptions) and provide a single set of assumptions that
are sufficient for most of our results. A second restriction is the assumed conditional
homoskedasticity of the innovations. If this restriction is dropped the asymptotic

7Here ⊗ stands for the Kronecker product corresponding to columnwise vectorization.
8Note that Ft−1,y,z2 = Ft−1 under the null hypothesis.

8



distributions change and the estimators have to be adapted to account for possible
heteroskedasticity. We will not go into details in this respect.

Under the null hypothesis we have yt = εyt,p + ψx2x
−
2t and hence Y ′X1.2 = E ′

pX1.2.

This motivates the following high level assumptions where Γ̂1.2 := T−1X ′
1.2X1.2 is used:

Assumption HL: Let p = p(T ) be a function of the sample size T and pz1 be a fixed
integer. Then assume that the following conditions have been verified:
(i) Σ̂ε → Σ in probability.
(ii) Γ̂1.2 → Γ1.2 in probability for some matrix Γ1.2 ∈ Rkz1pz1×kz1pz1 , Γ1.2 > 0.

(iii) p(T ) is such that T−1/2vec(
∑T

t=p+1 εyt,p(x
−
1.2t)

′)
d→ Zε where Zε ∈ Rkz1ky is nor-

mally distributed with mean zero and variance Γ1.2 ⊗ Σ.
From these high level assumptions the standard asymptotics for the Wald test are
immediate from (8).

Theorem 1 Let Assumption HL hold for εyt,p = yt−ψx2x
−
2t−ψx1x

−
1t where the integer

p is chosen as in HL (iii). Then, under the null hypothesis H0 : ψx1 = 0, the Wald
statistic Ŵ converges in distribution to a χ2 distributed random variable with kypz1kz1

degrees of freedom where pz1kz1 equals the dimension of x−
1t.

Of course the high level assumptions are not directly applicable. In the following it will
be shown that in a multitude of circumstances the high level conditions are fulfilled.

3.1 Infinite Order Stationary V ARX

We first address the stationary case. Under the null hypothesis we will assume that
the joint process wt := [y′

t, z
′
2t]

′ admits a V AR(∞) representation of the form given in

(2) where εt =
[

ε′yt ε′z2t

]′
fulfills Assumption N. The noise assumptions are in line

with Theorem 7.4.8. of Hannan and Deistler (1988) which extends Theorem 4 of Lewis
and Reinsel (1985) where (εt)t∈Z was assumed to be i.i.d. Many results building on
Lewis and Reinsel (1985) also use independent noise (Lütkepohl and Saikkonen, 1999;
Lütkepohl and Saikkonen, 1997; Dolado and Lütkepohl, 1996).

As described in Section 2, the test is based on the auxiliary model given in (4),
which for p = ∞ nests the true model. Here H0 : ψz1j = 0, j = 1, . . . , pz1 specifies the
null hypothesis while a wide range of alternatives can be included for large pz1. In the
following we will only consider the case that pz1 is some pre-specified integer rather than
the more general case, in which pz1 → ∞ as a function of the sample size. It should
be noted, however, that pz1 → ∞ in some situations could also be dealt with leading
to a more complicated asymptotic theory (Saikkonen and Lütkepohl, 1996). However,
it is not clear how the integer pz1 in such a setting could be chosen. Additionally the
assumptions on z1t in order for such results to hold are more restrictive. We will not
go into details in this respect.

We formalize the notion of reasonable approximability as is usually done in the
literature (Lewis and Reinsel, 1985; Lütkepohl and Saikkonen, 1997):
Assumption P1:

9



(i) The noise (εt)t∈Z fulfills Assumption N.
(ii)

∑∞
j=1 ‖πw,j‖2 < ∞. For πw(z) := I −

∑∞
j=1 πw,jz

j it holds that det πw(z) 6= 0, |z| ≤
1.
(iii) The integer p tends to infinity as a function of the sample size such that T 1/2

∑∞
j=p+1 ‖πw,j‖2 →

0 and p3/T → 0.
(iv) The process (z1t)t∈Z is generated according to the equation

z1t = νt +
∞∑

j=1

θjνt−j +
∞∑

j=1

φjεt−j (9)

where (νt)t∈Z fulfills Assumption N with Eνtν
′
t > 0 and is independent of the process

(εt)t∈Z. Here
∑∞

j=1 ‖[θj, φj]‖2 < ∞ is assumed.

Assumptions (ii) and (iii) match those of Lewis and Reinsel (1985, Theorem 2, p.
398). However, unlike in (Lewis and Reinsel, 1985), the process (z1t)t∈Z is not mod-
elled endogenously. In other words the VAR framework of Lewis and Reinsel (1985) is
exchanged with VARX modelling here. An important advantage of such an approach
is that it allows us to vary the integer pz1 freely, i.e. the choice of pz1 is not tied to the
approximation properties. Also we do not need to assume that (z1t)t∈Z has a V AR(∞)
representation. Hence the assumptions include overdifferenced processes which are
excluded in Lewis and Reinsel (1985). Furthermore z1t may be a function of lagged
yt−j and z2t−j, j ∈ N. The assumptions on (z1t)t∈Z nevertheless exclude a number of
interesting cases: Due to the summability assumptions on the coefficients θj and φj the
process (z1t)t∈Z is stationary. Integrated processes will be dealt with in later sections.
Also certain long memory processes are excluded (see below). These are the topic of
section 3.4.

The following result is a consequence of the proof of Theorem 3 of Lewis and Reinsel
(1985), which it extends to the VARX framework:

Theorem 2 Let x−
2t := [y′

t−1, . . . , y
′
t−p, z

′
2t−1, . . . , z

′
2t−p, z

′
1t−pz1−1]

′ and x−
1t := [z′1t−1, . . . , z

′
1t−pz1

]′.
Then Assumption P1 implies Assumption HL.

The theorem shows that in situations where the true process follows a VARX(∞,pz1)
the Wald test statistic can be used as if the true process was a V ARX(p, pz1). The
main advantage in comparison to previously obtained results, such as those in Dolado
and Lütkepohl (1996), is that the regressors z1t are not modelled endogenously. This
leads to a more parsimonious model in the case where yt can be modelled using only a
few lags relative to a full VAR model also containing z1t. From the proof of the theorem
it is obvious that in this special case the result also holds if the surplus lag z1t−pz1−1 is
not included in x−

2t. The inclusion of this additional term may be expected to reduce
the power of the tests where the decrease in power depends on the characteristics of
z1t and the lag length pz1. Dolado and Lütkepohl (1996) contains a discussion on
these issues. This power loss is the downside to the robustness properties of the test
provided in the following sections.
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3.2 Infinite Order Nonstationary V ARX

In the last subsection we dealt with stationary processes. One of the main motivations
behind the surplus lag approach was to obtain results without unit root and cointe-
gration pre-testing in cases where components of yt and/or zt might be (co)integrated.
This is allowed for in the following assumption.

Assumption P2:
(i) There exists a nonsingular matrix Γ = [γ⊥, γ], γ ∈ R(ky+kz2)×n, 0 ≤ n ≤ ky + kz2

such that the process (vt)t∈Z obtained as (using a random value w0 that has finite fourth
moments and is independent of εt, ηt, t > 0)

vt :=

[
γ′
⊥(wt − wt−1)

γ′wt

]
(10)

has an autoregressive representation
∑∞

j=0 πv,jvt−j = εt where (εt)t∈Z fulfills Assump-
tion N.
(ii) For πv(z) :=

∑∞
j=0 πv,jz

j we assume det πv(z) 6= 0, |z| ≤ 1.
(iii) Summability of power series:

∑∞
j=1 j‖πv,j‖2 < ∞.

(iv) The integer p is chosen as a function of the sample size such that p3/T → 0 and
T 1/2

∑∞
j=p+1 ‖πv,j‖2 → 0.

(v) The process (z1t − z1t−1)t∈N for random z10 (finite fourth moment, independent of
εt, ηt, t > 0) fulfills Assumption P1(iv) where additionally

∑∞
j=0 j‖[θj, φj]‖2 < ∞ holds.

Here γ denotes the cointegrating relations as (γ′wt)t∈N is assumed to be stationary.
Note that these assumptions also include many processes fulfilling Assumption P1.
They lead to the following Theorem:

Theorem 3 Let x−
2t := [y′

t−1, . . . , y
′
t−p, z

′
2t−1, . . . , z

′
2t−p, z

′
1t−pz1−1]

′ and x−
1t := [z′1t−1, . . . , z

′
1t−pz1

]′.
Then Assumption P2 implies Assumption HL.

The theorem extends the results of Theorem 5 of Saikkonen and Lütkepohl (1996)
from the VAR to the VARX framework with the same advantages as in the station-
ary case. The integer pz1 is not tied to the approximation quality and more general
processes z1t are allowed for. This is an appealing and useful feature of Granger-
noncausality test in many different frameworks. All processes yt, z1t and z2t can be
stationary, integrated or cointegrated and we do not use any information on possible
cointegrating relations. This robustness property follows from the fact that the prop-
erties of εt,p are identical across all cases and that in all cases there exists a sequence
of matrices τp such that x−

1t − τpx
−
2t is stationary. The fact that this is sufficient for

standard asymptotics to hold is also acknowledged in Theorem 1 of Toda and Phillips
(1993) and footnote 3 of Sims et al. (1990).

Of course this robustness comes at a price: If z1t is stationary then one lag of z1t is
unnecessarily omitted from the test restriction, leading to a loss of power with respect
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to tests under correct specification as noted by Dolado and Lütkepohl (1996). From
the proof of Theorem 3 it is obvious that for stationary z1t the variable z1t−pz1−1 can

be omitted in the definition of x−
2t and the asymptotic distribution of Ŵ is unchanged

but the resulting test has higher power since it is based on a smaller model. If z1t is
in fact integrated but is considered to be stationary such that no lag of z1t is included
in x−

2t then the asymptotic distribution is incorrect as is the size of the test. Hence, in
situations where z1t clearly is stationary rather than integrated the omission of z1t−pz1−1

seems to be the better procedure. If this decision cannot be made with certainty then
there is an argument for using the robust version of the test given the fact that for
large pz1 the expected loss in power is small whereas the effect of misspecification can
be substantial.

If additionally the cointegrating rank of the joint process [y′
t, z

′
2t, z

′
1t]

′ is known then
superior tests can exploit this knowledge (Toda and Phillips, 1993). In this situation
the power loss can be substantial due to the T -consistency of the estimators of the
cointegrating vectors as compared to the

√
T consistency of the excess lag estimators.

Note however, that in any case there is a risk of misspecification. The proposed tests
given in this paper sacrifice power in special cases for obtaining robust inference under
a wide variety of possible assumptions on the data generating process. The surplus
lag Wald test Ŵ relies on neither pre-test nor pre-estimation to obtain a distribution
that is invariant to the number of I(0) and I(1) components and the same invariance
extends to the local-to-unity framework.

3.3 Local-to-unity processes

We next address the behavior of the surplus lag Wald test Ŵ under the local-to-unity
framework, introduced by (Phillips, 1987; Chan, 1988), which bridges the gap between
asymptotic theory for integrated and stationary processes. In this model, the largest
root of z1t, say aT = 1 + c/T , is specified as a Pitman drift that approaches unity as
T → ∞. This is a modeling device, whose asymptotics have been found quite accurate
in approximating small sample distributions when roots are slightly less than unity.
It has played an important role in financial and macroeconomic applications in which
a number of variables that should be stationary according to economic theory, are
nonetheless found to be highly persistent in practice. It is also precisely the case in
which the power of unit root tests is low and therefore uncertainty exists regarding the
choice between level and difference specifications. This poses a challenge for inference
since the asymptotic distribution of most estimators depends on the value of c, a
parameter which cannot be consistently estimated using a single time series. For
example, Elliott (1998) finds that the critical values of most common I(1)/cointegration
methods, including those involving pre-test, may be inaccurate when the true process
is local-to-unity. Likewise, stationary asymptotics are also not generally appropriate
in this case. Thus, with a few recent exceptions (Jansson and Moreira, 2006; Maynard
and Shimotsu, forthcoming) bounds procedures have been required due to critical
values that depend on c (Cavanagh et al., 1995, e.g.).
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As we show below, the robustness advantage of the surplus lag method becomes
particularly apparent in a local-to-unity context. Since the surplus lag Wald test Ŵ
relies on neither pre-test nor pre-estimation to obtain a distribution that is invariant to
the number of I(0) and I(1) components, it may be expected that the same invariance
extends to the local-to-unity framework.

We will use the following assumptions:
Assumption P3 :
(i) Define AT,w := I + Cw/T, Cw = diag(c1, c2, . . . , cky+kz2−n) and ci ≤ 0 for i =
1, . . . cky+kz2−n. There exists a nonsingular matrix Γ = [γ⊥, γ], γ ∈ R(ky+kz2)×n, 0 ≤
n ≤ ky + kz2 such that the process (vt)t∈Z obtained as (for suitable value w0)

vt :=

[
γ′
⊥wt − AT,wγ′

⊥wt−1

γ′wt

]
(11)

has an autoregressive VAR(∞) representation
∑∞

j=0 πv,jvt−j = εt where (εt)t∈Z fulfills
Assumption N.
(ii) For πv(z) :=

∑∞
j=0 πv,jz

j we assume det πv(z) 6= 0, |z| ≤ 1.
(iii) Summability of the power series:

∑∞
j=1 j‖πv,j‖2 < ∞.

(iv) The integer p increases with T such that p3/T → 0 and T 1/2
∑∞

j=p+1 ‖πv,j‖2 → 0.

(v) Let AT,z := I+Cz/T where Cz := Sdiag(cz,1, . . . cz,kz1)S
−1, cz,i ≤ 0 for i = 1, . . . kz1,

and S ∈ Rkz1×kz1 is nonsingular. The process (z1t − AT,zz1t−1)t∈Z for some value z10

fulfills Assumption P1(iv) where additionally
∑∞

j=1 j‖[θj, φj]‖2 < ∞ holds.

Under Assumption P3 yt, z1t and z2t are all defined as triangular arrays9 that can
be either stationary, integrated, or near-integrated. Cointegrating relations may exist.
The matrices of largest roots AT,w and AT,z depend on the matrices of local-to-unity
parameters Cw and Cz respectively, allowing for a different local-to-unity parameter (ci

and cz,i) in each element of γ′
⊥wt and z1t. The component γ′wt is stationary, allowing

for cointegration in wt with cointegration rank n. The no cointegration case (n = 0)
is also included. Cointegration between wt and z1t is allowed for, but not explicitly
modeled. Results for exact unit roots hold when ci = cz,i = 0. It is obvious that
Assumption P3 implies Assumption P2 with ci = cz,i = 0 for all i.

The theorem below shows that the same high level assumptions are implied un-
der the local-to-unity model, which confirms that Ŵ maintains the same asymptotic
normality irrespective of the value of c in the local-to-unity model. As in the I(1)
case, the main technical reason is that there exists a sequence of matrices τp such that
x−

1t − τpx
−
2t is stationary.

Theorem 4 Let x−
2t := [y′

t−1, . . . , y
′
t−p, z

′
2t−1, . . . , z

′
2t−p, z

′
1t−pz1−1]

′ and x−
1t := [z′1t−1, . . . , z

′
1t−pz1

]′.
Then Assumption P3 implies Assumption HL.

The extension of this robustness result for the Wald test from the standard I(1) frame-
work to the local-to-unity framework is new to the best of our knowledge. From a

9For notational simplicity we follow common practice in suppressing the dependence on T due to
the localization.
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theoretical perspective, it is perhaps not surprising, but as discussed above, this is a
rare property that has useful practical implications for the value of this method as a
robust test.

3.4 Long-memory forcing variables

Models of fractional integration originating from (Granger and Joyeux, 1980; Hosking,
1981) provide another useful method of spanning the I(0)/I(1) divide. A variable z1t

is said to be integrated of order d if its fractional difference (1 − L)dz1t is I(0). Thus
values of 0 < d < 1 provide an intermediate between I(0) and I(1) models, in which
shocks do decay, but only at a hyperbolic rate. These slow decay rates have been
found important to modelling a number of phenomena in economics and finance, as
well as in the natural sciences (Baillie, 1996). For values of d < 0.5, the process fits
into a larger class of stationary long-memory models. Values of d > 0.5 correspond to
nonstationary fractional integration. Because the degree of fractional integration d is
consistently estimable, long-memory models do not pose quite the same difficulties for
inference as the local-to-unity model. Nevertheless, specialized inference techniques are
often required for addressing systems involving fractional (co)-integration.10 Typically,
these techniques depend on consistent estimates of the parameter d and are thus not
the same as the techniques that would be applied under other models of persistent
behavior, such as the near unit root model analyzed above. An advantage of the
surplus lag Wald test statistic shown below is that it has a standard limit distribution
for both stationary and nonstationary long-memory forcing variables.

3.4.1 Stationary long-memory

Assumption P1 for stationary infinite VARX processes imposed summability assump-
tions on the impulse response sequence of the exogenous process (z1t)t∈N. These as-
sumptions exclude long-memory processes such as fractionally integrated processes
with 0 < d < 0.5. In this section we will provide less restrictive assumptions including
such processes:
Assumption P4 :
(i) Assumption P1, (i) - (iii) hold. Additionally (εt)t∈Z is assumed to be i.i.d.
(ii) The process (z1t)t∈Z is generated according to the equation (9), where (νt)t∈Z fulfills
Assumption N and is independent of the process (εt)t∈Z. Here ‖[θj, φj]‖2 ≤ cjd−1 for
some constant 0 < c < ∞ and −0.5 < d < 0.5 is assumed.
(iii) p is chosen such that p = o(T 1−2d) and Assumption P1(iii) is fulfilled for this
choice of p.

These assumptions on the exogenous inputs include many long-memory processes
and in particular fractionally integrated processes. In fact the assumptions are much
weaker than this including sums of fractionally integrated processes. Since the squared

10See footnote 2 for a partial list of references.
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coefficients for d ≈ 0.5, d ≤ 0.5 are just summable, the conditions on the impulse
response sequences are close to minimal. On the other hand, it has been found nec-
essary to introduce an additional condition on p, the number of lags included in the
approximation for 1/3 < d < 1/2 since in this case the estimates of the covariance
sequence, including the cross covariance with lags of yt and z2t, are extremely unre-
liable. In fact, their covariances are of order O(T 4d−2) and hence arbitrarily small
fractions of the sample size are obtained as convergence orders for values close to
d = 0.5. This in turn limits the range of admitted processes via the assumption that
T 1/2

∑∞
j=p+1 ‖πw,j‖2 → 0. In some situations this is not a severe limitation. If the

joint process wt is a VARMA process then any rate of the form p = T c will fulfill the
approximation restriction and choosing c < 1 − 2d the condition on p can be easily
met.

In this setting the advantage of the VARX framework is most clearly visible. If
instead one modelled the process [y′

t, z
′
1t, z

′
2t]

′ using the VAR framework then overly
large orders are needed in order to obtain a small approximation error εyt,p − εyt due
to the slow decay of the coefficients in the VAR(∞) representation of the true process.
In the VARX framework this difficulty does not arise. Moreover, overdifferenced pro-
cesses can also be used as regressors since they do not need to be approximated using
autoregressive terms.

Again it can be shown that Assumption HL holds.

Theorem 5 Let x−
2t := [y′

t−1, . . . , y
′
t−p, z

′
2t−1, . . . , z

′
2t−p, z

′
1t−pz1−1]

′ and x−
1t := [z′1t−1, . . . , z

′
1t−pz1

]′.
Then Assumption P4 implies Assumption HL.

This result for stationary long-memory does not depend on the surplus lag and also
holds if z1t−pz1−1 is omitted in the definition of x−

2t. Again this results in a power-
robustness tradeoff.

3.4.2 Nonstationary long-memory

It has been observed in the literature that the estimates of d for fractionally integrated
processes often are close to d = 0.5 (cf. the references given in Baillie, 1996, section 6,
p. 43). The last theorem showed that the Wald test is robust with respect to fractional
integration for −0.5 < d < 0.5. Previously, robustness with respect to integration has
been given in Theorem 3. We next combine these two results to conclude that the
surplus lag test also retains robustness under the following set of assumptions, which
allow for forcing variables with nonstationary long-memory.
Assumption P5 :
(i) Assumption P1, (i) - (iii) hold. Additionally (εt)t∈Z is assumed to be i.i.d. and∑∞

j=1 j1+δ‖πw,j‖ < ∞ for some δ > 0.

(ii) There exists full column rank matrices β ∈ Rkz1×(kz1−cz1) and β⊥ ∈ Rkz1×cz1 , β′β⊥ =
0 such that for β′

⊥z10 = 0 [
β′
⊥(z1t − z1t−1)

β′z1t

]
= vt, t ∈ N (12)
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where

vi,t =
∞∑

j=0

Li(j)
Γ(j + di)

Γ(di)Γ(j + 1)
α′

i

(
νt−j

εt−j

)
, (13)

for −0.5 < di < 0.5, ‖αi‖2 = 1, limj→∞ Li(j) = 1, and (νt)t∈Z i.i.d. and independent
of εt, with Eνt = 0, Eνtν

′
t > 0 and finite fourth moments.

(iii) Defining dmax := max(d1, . . . , dkz1), and dmin := min(d1, . . . , dcz1), p is chosen
such that p = op

(
Tmin{1/3,1−2dmax,1/3(1+2dmin)}) and T 1/2

∑∞
j=p+1 ‖πw,j‖2 → 0 for this

choice of p.

Nonstationary fractional integration in the forcing variable is allowed for through the
hyperbolic rates of decay on β′

⊥(z1t − z1t−1), through (13), which allows for different
values of d in each element of β′

⊥z1t.
11 The cointegrating residuals, given by β′z1t,

may be fractionally integrated of order −0.5 < di < 0.5. The inclusion of the slowly
varying coefficients, Li(j), lends flexibility to the short-memory dynamics, allowing for
models such as the ARFIMA(p,d,q), as discussed in Davidson and Hashimzade (2007).
In comparison to our previous assumptions, the required restrictions on the increase
of p as a function of the sample size are striking. Assumption P4 showed problems
for the fractional integration parameter di close to 0.5 due to the bad estimates of the
covariance sequence. Assumption P5 indicates difficulties for di near −0.5. The reason
for problems in that case is the slow divergence rate of the nonstationary component,
with integration 1 + di only slightly above 0.5. The borderline case di = 0.5 has not
been analyzed. On the other hand, the remaining assumptions are far from minimal.
In particular the assumptions on vt appear to be overly strong. Again we stress that
we are not interested in the most general setup but only in providing cases in which
the standard asymptotics for the Wald test hold:

Theorem 6 Let x−
2t := [y′

t−1, . . . , y
′
t−p, z

′
2t−1, . . . , z

′
2t−p, z

′
1t−pz1−1]

′ and x−
1t := [z′1t−1, . . . , z

′
1t−pz1

]′.
Then Assumption P5 implies Assumption HL.

The theorem shows that in the case that the exogenous regressors are fractionally
integrated of order 0.5 < d < 1.5 the null asymptotics of the surplus-lag Wald test
for Granger-noncausality remain standard. In the special case when the lag length p
is known and finite, the validity of the excess lag test may be partially anticipated
by the results of Dolado and Marmol (2004) who generalize the findings of Sims et
al. (1990) to allow for nonstationary fractional integration. However, the above result
appears to be the first to directly establish the validity of the surplus lag method
with nonstationary fractionally integrated regressors. The allowance for unknown and
possibly infinite order models complicates the analysis non-trivially.

11Marinucci and Robinson (1999) distinguish between two types of fractional integration, Type I
and Type II, depending on the treatment of the initial conditions. Our assumptions allow for Type I
fractional integration.
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3.5 Stationary processes with structural breaks

We next expand the stationary infinite VARX process to allow for the occurrence of
a fixed number (J) of historical breaks in the intercept of the exogenously modelled
variable z1t, which occur at fixed fractions of the sample size. Although the true data
generating process includes breaks, we do not assume that any breaks are included in
the estimated model. In particular, we wish to avoid any first stage inference regarding
the existence of and/or number of breaks. Breaks in the process for the endogenously
modelled variables wt would have to be explicitly modelled and thus are not consid-
ered. Breaks in the coefficients ψx1 governing the impact of x1t on yt are also excluded
under the null hypothesis, under which these coefficients are fixed at zero.

Assumption P6 :
(i) Assumption P1, (i) - (iii) hold. Additionally (εt)t∈Z is assumed to be i.i.d.
(ii) Let J be a fixed integer denoting the number of breaks. Defining ω0 := 0 and
letting ωj j = 1, . . . , J denote the fraction of the sample spent in regime j between the

(j − 1)th break and the jth break, with
∑J

j=1 ωj = 1, the process (z1t)t∈Z is generated
according to the equation

z1t =
J∑

j=1

φ̄jI

(
1 +

⌊
j−1∑
k=0

ωkT

⌋
≤ t ≤

⌊
j∑

k=1

ωkT

⌋)
+ νt +

∞∑
j=1

θjνt−j +
∞∑

j=1

φjεt−j

where I(·) denotes an indicator function bxc denotes the greatest integer less than x,
(νt)t∈Z fulfills Assumption N with Eνtν

′
t > 0 and is independent of the process (εt)t∈Z.

Here
∑∞

j=0 ‖[θj, φj]‖ < ∞ is assumed.

While we do not assume that z1t is explicitly modelled in the empirical analysis,
the estimated VARX must either include an intercept, or at a minimum, z1t must
be demeaned prior to estimation. It will be convenient to work with deviations from

means. Let x−
t :=

[ (
x−

1t

)′ (
x−

2t

)′ ]′
denote the full set of regressors and define

µ(j) := E
[
x−

t I (t ∈ Sj)
]
and µ̄ :=

J∑
j=1

ωjµ(j)

as the mean within regime j and the average mean across regimes, respectively. Here

we define Sj =
{

pz1 + 1 + b
∑j−1

k=0 ωkT c, . . . , b
∑j

k=1 ωkT c
}

as the data range that would

result if restricted to regime j only.
Let Ŵ (x̄−) denote the value of the Wald statistic introduced earlier when the

original data x−
t is replaced by x−

t − x̄−. To keep the proofs simple, we first show that

the infeasible estimator Ŵ (µ̄) has the correct large sample distribution.

Theorem 7 Let x−
2t := [y′

t−1, . . . , y
′
t−p, z

′
2t−1, . . . , z

′
2t−p, z

′
1t−pz1−1]

′ and x−
1t := [z′1t−1, . . . , z

′
1t−pz1

]′.
Then Assumption P6 implies Assumption HL is satisfied for the infeasible Wald statis-
tic Ŵ (µ̄) .
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The result is easily extended to the feasible statistic Ŵ (x̄−) in the following corol-
lary, the proof of which is omitted.

Corollary Assume that P6 holds. Then under the null hypothesis H0 : ψx1 = 0 the
Wald statistic Ŵ (x̂−) converges in distribution to a χ2 distributed random variable
with kypz1kz1 degrees of freedom where pz1kz1 equals the dimension of x−

1t.

4 Simulation results

In this section we conduct a small Monte Carlo study to investigate the finite sample
performance of the test. Following the notation above, we refer to yt as the dependent
variable and z1t as the forcing variable. The primary motivation for the inclusion of the
excess lag is to enhance the robusness of the resulting causality test to both the degree
and nature of the persistence in the forcing variable. Therefore we consider several
different models for z1t, including I(0), I(1), near-unit root, and fractionally integrated
cases. We also consider both I(0) and I(1) models of the dependent variable and allow
both for cases in which yt and z1t are cointegrated and for cases in which yt and z1t

are nonstationary but do not cointegrate. Some related simulation results for the pure
VAR based surplus-lag tests in I(1) and cointegrating settings are provided by Dolado
and Lütkepohl (1996) and, more extensively, by Swanson et al. (2003). However, we
are not aware of any results on their performance in near unit root or long-memory
settings. We also present some new small sample power comparisons.

4.1 Simulation Models

In the simulation models presented below, we denote by δ the parameter that is used
to measure the distance of the true model from the null hypothesis. With a few
exceptions, we test H0 : δ = 0 against HA : δ 6= 0 and thus we provide results for both
finite sample size (δ = 0) and power (δ 6= 0). We note, however, that the meaning of δ
differs in each specification and therefore test power is not directly comparable across
models. The innovation process is specified as12

ε′t = (ε1t, ε2t) ∼ i.i.d. N(0, Σ) for Σ =

[
1 σ12

σ12 1

]
, and σ12 = −0.8. (14)

4.1.1 I(0), I(1), and cointegration cases

We first consider the behavior of the test under three standard models involving I(0),
I(1), and cointegrated variables. The first is a stationary levels VAR (levels-VAR) in

12Granger noncausality (condition 1) has no implication for the residual cross-correlation, σ12.

18



which both yt and z1t are I(0):[
yt

z1t

]
=

[
0.5 δ
0.3 0.5

] [
yt−1

z1t−1

]
+

[
ε1t

ε2t

]
. (15)

The second is a difference VAR (difference-VAR) in which both yt and z1t are I(1) and
there are no cointegrating vectors:13[

∆yt

∆z1t

]
=

[
0.5 δ
0.3 0.5

] [
∆yt−1

∆z1t−1

]
+

[
ε1t

ε2t

]
. (16)

The third type model we consider is a vector error correction model (VECM), in which
yt and z1t are I(1) and cointegrated:[

∆yt

∆z1t

]
=

[
−δ1

1

] [
1 −δ2

] [
yt−1

z1,t−1

]
+

[
0.5 δ3

0.3 0.5

] [
∆yt−1

∆z1t−1

]
+

[
ε1t

ε2t

]
.(17)

Re-expressing the top equation as ∆yt = −δ1yt−1 +δ1δ2z1t−1 +0.5∆yt−1 +δ3∆zt−1 +ε1t

illustrates three possible sources of Granger-causality running from z1t to yt: the speed-
of-adjustment term (δ1), the cointegrating coefficient on z1t (δ2), and the lagged first
differences (δ3), the last of which is also examined in the simulations of Dolado and
Lütkepohl (1996). Due to the non-linearity, in this case the null hypothesis is given
by H0 : δ1δ2 = δ3 = 0. Because we expect this distinction to matter, we consider test
power along all three dimensions.

4.1.2 Models with near-unit-root/local-to-unity

We define c ≤ 0 as the local-to-unity coefficient and aT = 1+ c/T . In this case there is
no equivalent to the stationary model in levels (levels-VAR) considered above. How-
ever, similar to the difference VAR above, we include a model with non-cointegrated
near unit roots (no-cointegration):[

∆yt

∆z1t

]
=

[
aT − 1 0

0 aT − 1

] [
yt−1

z1t−1

]
+

[
0.5 δ
0.3 0.5

] [
∆yt−1

∆z1t−1

]
+

[
ε1t

ε2t

]
. (18)

We also consider two models that allow for cointegration between near unit roots. In
the first model (z-adjusts):[

∆yt

∆z1t

]
=

[
aT − 1 0

aT −1

] [
yt−1

z1t−1

]
+

[
0.5 δ
0.3 0.5

] [
∆yt−1

∆z1t−1

]
+

[
ε1t

ε2t

]
(19)

(yt, z1t) have cointegrating vector (1,−1) and z1t may be seen as the variable that
adjusts to restore long-run equilibrium. In the second model (y-adjusts), specified by,[

∆yt

∆z1t

]
=

[
−1 aT δ1

0 c/T

] [
yt−1

z1t−1

]
+

[
0.5 δ2

0.3 0.5

] [
∆yt−1

∆z1t−1

]
+

[
ε1t

ε2t

]
, (20)

13In order to provide a basis of comparison to the previous literature, we choose the parameters of
this model to match a special case of the simulations in Dolado and Lütkepohl (1996).
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it is yt that performs this adjustment and therefore the cointegrating vector (−1, δ1)
specifies an alternative to the null model of Granger noncausality. Both cointegrating
specifications are specializations of (Elliott, 1998, eq. 2), who considers inference on
cointegrating parameters, but not causality testing, in near-integrated models.

4.1.3 Models involving fractional integration in z1t

In this case, we assume that z1t is fractionally integrated of order d and model it as:

z1t = (1 − L)−d ε2t (21)

for 0 < d < 1. Under the null hypothesis we consider cases in which yt is I(0) and
cases in which yt is I(1). We do not include cases in which yt is I(d) and fractionally
cointegrated with z1t because this is not a case in which our surplus lag method, which
relies on finite order approximate models under the null hypothesis, can be expected
to work. However, under the alternative we may allow for all three cases: yt I(0), yt

I(1), and yt I(d) and fractionally cointegrated with z1t.
To be concrete, we consider two models. In the first model:

∆yt = 0.5∆yt−1 + δ∆z1t−1 + ε1t, (22)

yt is I(1) under both the null and alternative. Because z1t is I(d) for d < 1, yt and
z1t cannot cointegrate even under the alternative hypothesis. In the second model we
consider

∆yt = −0.5(yt−1 − δ1z1t−1) + δ2∆zt−1 + ε1t, (23)

in which yt is I(0) under the null hypothesis (H0: δ1 = δ2 = 0). Under the alternative, yt

may be either I(0) (δ1 = 0, δ2 6= 0) or I(d) and cointegrated with z1t (with cointegrating
vector (1,−δ1)).

4.2 Test procedures

Under each of these models we compare four simple methods of testing Granger non-
causality. The first two tests, based on a VAR(2) in levels (Levels-VAR) and a VAR(1)
in differences (Dif-VAR), are included as a basis of comparison. They are both based on
standard Wald tests for Granger causality that do not employ the surplus lag methodol-
ogy. The levels VAR tests the null restriction H0 : A12(1) = A12(2) = 0 using the fitted
AR(2) model (ŷt, ẑ1t)

′ = Â(0)+
∑2

i=1 Â(i)(yt−i, z1t−i)
′. The difference VAR tests the re-

striction H0 : A12(1) = 0 in the fitted model (∆̂yt, ∆̂z1t)
′ = Â(0)+Â(1)(∆yt−1, ∆z1t−1).

In both cases all relevant lags are tested. A levels VAR is an appropriate specification
under (15), while the difference VAR is correct under (16). However, as we do not
assume a priori knowledge of integration orders, we consider the behavior of both tests
under both data generating processes (hereafter DGPs).14

14The lag order of the levels-VAR (p = 2) is chosen to be large enough to accommodate (16), when
rewritten as a nonstationary VAR(2) in levels. When applying the levels-VAR(2) to (16), this choice
of p = 2 allows us to observe the effect of misspecifying the order of integration without misspecifying
the lag order.
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The third test (Toda-Phillips), an implementation of the method suggested by Toda
and Phillips (1993), is a causality test based on a vector error correction model, with
pre-tests for unit roots and cointegration rank. Unlike the two previous tests, this test
does not rely on prior information regarding integration orders and cointegration rank
and thus provides a far more serious and difficult benchmark than the two previous
tests.

The final test (Surplus-VARX), based on an ARX(2,3), is an example of the
surplus lag VARX causality test analyzed in theoretical sections above. In con-
trast to the previous three approaches, the forcing variable z1t is not explicitly mod-
elled. Instead, we estimate the autoregressive distributive lag or ARX model ŷ1t =
â(0) +

∑2
i=1 â(i)y1t−i +

∑3
i=1 b̂(i)z1t−i, in which z1t is an unmodelled forcing process,

and test H0 : b(1) = b(2) = 0. The implication of Granger noncausality for the surplus
lag b(3) is not tested. Because we do not require any extra surplus lags of y1t we base
the test on a surplus lag ARX(2,3) rather than a surplus-lag ARX(3,3).

4.3 Rejection rates under the null

Since we are interested in the robustness of these procedures to possible misspecifi-
cation of the order of integration, we consider the application of each of these four
methods under the null hypothesis corresponding to each of the data generating pro-
cesses considered in Section 4.1 above. The results are divided into three tables. Table
1 provides null rejection rates for the I(0), I(1) and cointegrated models of Section
4.1.1, Table 2 presents results for the local-to-unity specifications of 4.1.2, and Table
3 gives the rejection rates for the fractionally integrated model of Section 4.1.3. In all
cases the error processes are described by (14), with σ12 = −0.8. Within each panel
we present results for sample sizes of T = 50, 100, 200, and 500. The table entries
show finite sample rejection rates under the null hypotheses for a five-percent nominal
test based on one thousand simulations.

We turn first to Table 1. Columns 3-4 provides null rejection rates for data simu-
lated under the stationary levels VAR (eq. 15, δ = 0) and the difference VAR (eq. 16,
δ = 0), respectively. Columns 5-6 are both generated under the error correction model
(eq. 17, δ3 = 0), which has cointegrating vector (1,−δ2)

′. In Column 5, (δ1, δ2) = (1, 0),
a null hypothesis under which there is no cointegration between yt and z1t. In Column
6, (δ1, δ2) = (0, 1), implying cointegration but not Granger causality from z1t to yt.

As expected, the levels VAR (top panel) has good size when the DGP is given
by the stationary VAR (Column 3). It also gives reasonable size under the two error
correction model specifications (Columns 5-6). However, it suffers from non-trivial size
distortion when the true model is a VAR in first differences (Column 4). Similarly, the
difference VAR (Panel 2) has good size when the true model is a difference VAR in
levels (Column 4) but suffers serious size-distortion when the true model is stationary
in levels (Column 5). This is due to over-differencing and also results in size distortion
in the VECM specification of Column 5, in which ∆yt is again over-differenced. By
contrast, both the Toda-Phillips and surplus-lag procedures show reasonable rejection
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rates across all four specifications for sample sizes of T = 200 or larger. For both
tests some size distortion is nonetheless observed in smaller samples, particularly in
Columns 2 and 3.

Table 2 shows simulation results under the local-to-unity DGPs of Section 4.1.2, us-
ing a local-to-unity parameter of c = −5.0. The results in Columns 3-5, correspond to
simulation models (18), (19), and model (20), respectively, with δ = 0. The levels VAR
is moderately over-sized in model (18), in which both variables are quasi-differenced, a
DGP that specializes to the difference VAR for c = 0 (aT = 1). On the other hand, it
shows reasonable accurate size for the specifications of Columns 4-5, based on models
that allow for cointegration between near unit roots. The difference specification gives
good results under the DGPs of Columns 3-4, but as shown in Column 5 is terribly
over-sized in model (20). Although the Toda-Phillips procedure was not specifically
designed to work in a local-to-unity setting, it nonetheless provides quite good size
under model (19), as seen in Column 4. On the other hand, it is subject to size distor-
tion under models (18), and (20) respectively. This may be due in part to difficulties
associated with unit root and cointegration pre-tests in local-to-unity models and we
found that the distortion appears only to occur in the case of residual cross-correlation
(i.e. σ12 6= 0). The surplus-lag VARX also suffers from some small sample size distor-
tion, particularly for T = 50, but provides quite accurate size across all three models
in larger sample sizes.

Finally, in Table 3, we consider the empirical size of the causality tests under the
fractionally integrated models of Section 4.1.3, in which z1t is generated by (21) us-
ing values of d = 0.4 (stationary long-memory) in Columns 3 and 5 and d = 0.8
(nonstationary fractional integration) in Columns 4 and 6. In Columns 3-4, the de-
pendent variable, yt, is generated by (22), with δ = 0, a model without cointegration.
In Columns 5-6 yt is given by (23), with δ1 = δ2 = 0, a model allowing fractional
cointegration under the alternative.

All four methods show only moderate size distortion in larger samples when z1t

has stationary long-memory (Columns 3 and 5). Recall that our theoretical results
did not in this case, require the addition of a surplus lag. On the other hand, some
difficulties are again encountered when z1t is modeled as a nonstationary fractionally
integrated process in Columns 4 and 6. The levels VAR shows size distortion in
both models for d = 0.8. While the difference VAR works fine in the model without
cointegration (Column 3), it again shows severe distortion in model (23) (Column 5).
The Toda-Phillips is slightly over-sized in both models. The surplus-lag VARX shows
size distortion in small samples, but is again the only test to show reasonable size
across all models in the larger samples.

To summarize briefly, both the levels and difference VAR specifications can show
substantial size distortion when misspecified. In the case of the levels VAR this is
likely due to the use of standard critical values when nonstandard asymptotics apply.
The difference VAR is misspecified in cases of over-differencing and these cases result
in particularly large size distortions. While these results are not surprising, they
underline the importance of inference methods that are more robust to differing orders
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of integrations. Both the Toda-Phillips and surplus-VARX model fit this description
and both tests have good size against all I(0), I(1) and cointegrated models. Despite
the fact that the Toda-Phillips procedure is not designed for the local-to-unity or
fractionally integrated models, its size was still quite accurate across a number of
these specifications. Nevertheless, some size distortions were detected under certain
local-unity and nonstationary fractionally integrated models. Of the four models, only
the surplus-VARX based test provided reasonably accurate rejection rates in moderate
sample sizes across all specifications considered. This underlines its value as a causality
test that is particularly robust to misspecification of integration orders. Of course this
robustness does not come without cost. As we discussed earlier, the addition of an
unnecessary lag may be expected to reduce test power. The magnitude of this power
loss under various specifications is examined below.

4.4 Size-adjusted power

We next consider the behavior of the tests under the alternative hypothesis of Granger
causality (δ 6= 0 in most cases). Due to the large number of models and alternative
specifications in 4.1 we present only the results for the alternatives discussed in Section
4.1.1 to save space. The full set of results are available upon request.

Figures 1-5 display the size-adjusted power curves for all four tests, under the
alternative specifications of Section 4.1.1. Due to the large size distortions observed
in the level and difference VARs, when misspecified, we compare size-adjusted power
(defined here as power - actual size + nominal size) rather than power itself. In a few
cases we also omitted the difference VAR test due to its extreme distortion.

Figure 1 is generated under the levels VAR in (15). The misspecified difference
VAR appears biased and sized distorted. However, the size-adjusted power of the
other three tests are quite similar. In this case there appears to have been relatively
little power loss from use of the surplus lag. In Figure 2, the data is simulated from the
difference VAR specification given in (16). Here, the now correctly specified difference
VAR has substantially higher power than the other three methods. However, the size-
adjusted power of the surplus VARX is sometimes better and never much worse than
that of the other two tests.

The power loss due to the surplus lag becomes more evident in the VECM model,
which allows for the possibility of cointegration between yt and z1t. Figures 3, 4, and
5 show results for three different alternative specifications in (17). In figure 3, we set
(δ1, δ2) = (0, 1) and vary δ3 across the horizontal axis. In this model yt and z1t are
cointegrated under both the null and alternative and Granger causality is controlled
through the coefficients on the lagged first differences. In figure 4, (δ1, δ3) = (1, 0) and
we vary δ2. In this case, there is no cointegration between yt and z1t under the null
hypothesis δ2 = 0, but there is cointegration under the alternative. Finally, in Figure 5,
we set (δ2, δ3) = (1, 0) and trace the power curve by varying δ1, the speed-of-adjustment
parameter for yt. In all three cases the size-adjusted power of the surplus-lag causality
test lies substantially below that of both the levels VAR and Toda-Phillips test, at
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least until power reaches close to one.

4.5 A brief comparison of two surplus lag approaches

We next provide a few comparisons of the two variants of the surplus-lag causality tests:
the VAR based approach considered in the previous literature (Dolado and Lütkepohl,
1996; Toda and Yamamoto, 1995; Saikkonen and Lütkepohl, 1996) and the VARX
based approach studied above. The first involves an addition of one extra, untested,
lag to each variable for a joint VAR for yt and z1t, whereas in the second approach
only yt is modelled by means of a VAR and only z1t requires an extra surplus lag. As
seen in the theoretical section above, it is not in fact necessary to explicitly model
z1t in order to conduct a test of causality. Therefore, although the two approaches
are similar in spirit, one may expect certain advantages from the parsimony of VARX
based approach. More concretely, this may be expected to give rise to the following
two benefits:

1. The surplus-lag VARX requires only a surplus lag of z1t, whereas the surplus lag
VAR employs a surplus lag of both yt and z1t.

2. In the surplus lag VAR, the lag length must be chosen large enough to approxi-
mate the dynamics of both yt and z1t, whereas in the surplus lag VARX it needs
only be chosen large enough to accommodate the dynamics of yt (including its
possible dependence on past z1t).

In our Monte-Carlo experiments, we have generally found that the first of these
two advantages leads to relatively minor gains, whereas as the second advantage listed
above can be quite important, particularly when the dynamics of z1t are complicated
relative to those of yt. This is not an uncommon circumstance in practice. Stock
returns, for example, have simple mean-dynamics, whereas the variables often used to
predict them, such as earnings and dividend price ratios, are highly persistent with
strong seasonal dynamics. Likewise, it is common to attempt prediction of exchange
rate returns using the forward premium, which shows long-memory characteristics.

To demonstrate this point as simply as possible, consider a stationary seasonal
VAR model, in which z1t has a seasonal autoregressive component, but yt does not:[

yt

z1t

]
=

[
0.5 δ
0.3 0.5

] [
yt−1

z1t−1

]
+

[
0 0
0 a22(s)

] [
yt−s

z1t−s

]
+

[
ε1t

ε2t

]
. (24)

In this case, the surplus-lag VAR would be implemented by estimating the VAR(s+1)
model, (ŷt, ẑ1t)

′ = Â(0) +
∑s+1

i=1 Â(i)(yt−i, z1t−i)
′, and testing the relevant elements of

the first s autoregressive coefficients, i.e. by testing H0 : A12(i) = 0 for i = 1, . . . s. On
the other hand, when using the surplus lag VARX we need only estimate the ARX(1,2)
given by ŷ1t = â(0) + â(1)y1t−1 +

∑2
i=1 b̂(i)z1t−i and test H0 : b(1) = 0.

Figures 6 and 7 show the corresponding size-adjusted power curves for s = 4
(corresponding to seasonality in quarterly data) and s = 12 (corresponding to monthly
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data), respectively. In both cases we set a22(s) = 0.3. These comparisons demonstrate
well the potential gains that can be achieved from employing the more parsimonious
surplus-VARX in place of the surplus-lag VAR. The size-adjusted power of the surplus-
lag VARX (dashed green line) is considerably higher than that of the larger surplus-lag
VAR (solid red line). This is particularly apparent at the monthly frequency (s = 12)
in Figure 7.

While the case discussed above illustrates the relative advantages of the VARX
version of the surplus-lag test, these gains are far more modest when the dynamics
of both yt and z1t are simple. For example, if we eliminate the seasonal root in the
above model, the surplus-lag VAR would simply be based on a test of H0 : a12(1) = 0
in an estimated VAR(2) model. This still requires the estimation of a slightly larger
model than the ARX(1,2) in the surplus-lag VARX, but the difference in model sizes
is now far smaller. The size-adjusted power curve corresponding to this experiment is
shown in Figure 8. The surplus-lag VARX still shows marginally better power, but its
advantage in this case is quite slight. Likewise, in most of the simple models considered
in section 4.1 we found the small sample behavior of the surplus-lag VAR and VARX
to be quite similar.

Although the simulations above are somewhat unrealistic in assuming known lag
lengths, one may expect to find similar comparisons when employing model selection
methods. For example, the model selected for the VAR is likely to be considerably
larger when the true model is given by (24) than when it is given by (15), whereas
the orders selected for the ARX would likely be small in both cases. A similar model
selection outcome would be expected for the case in which z1t has long-memory, but
y1t does not.

5 Conclusion

Employing a surplus lag in VAR based tests has been known to provide for infer-
ence which is invariant to possible I(1) nonstationarity without necessitating unit root
or cointegration pre-tests (Toda and Yamamoto, 1995; Dolado and Lütkepohl, 1996;
Saikkonen and Lütkepohl, 1996). This provides for robust inference at some cost in
terms of efficiency. On the other hand, there are arguably more efficient competing
methods, which make fuller use of the I(0)/I(1) framework, without requiring knowl-
edge on cointegration orders (Toda and Phillips, 1993; Kitamura and Phillips, 1997).

As our results demonstrate, the full advantage of the surplus approach becomes
more apparent once one departs from both the pure VAR model and the I(0)/I(1)
framework, of which it makes little explicit use, in order to allow for more general
models of persistence. In particular, by applying the surplus lag to a VARX, in which
the causing variables are exogenously modelled, we have shown that the same Chi-
squared test statistic and critical values can be used to test Granger causality under a
variety of possible data generating processes that may characterize the persistence in
the forcing variable. These include the I(0), I(1) and cointegrated models considered
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earlier in the VAR context, as well as stationary and nonstationary long-memory, local-
to-unity, and certain structural break models. In keeping with the earlier literature,
no estimates of the long-memory parameter or first-stage confidence intervals on the
local-to-unity parameter are required and the structural breaks need not be tested
for or explicitly modelled. The VARX framework turns out to be particularly useful
in allowing for long-memory and unmodelled structural breaks, which are not easily
incorporated into a pure VAR. However, it is only in the context of the surplus lag
that nonstationary processes, such as non-stationary fractionally integrated processes,
can be accommodated without altering the limit distribution of the test statistic. Our
simulation results suggest that this method works well in moderate sample sizes and
can, in some circumstances, provide substantial power improvements over the use of
the surplus lag test in a pure VAR model.
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A Technical lemmas

Lemma 1 Let wt =
∑∞

j=0 φw,jεt−j where (εt)t∈Z is an i.i.d. sequence of random vari-

ables having zero mean and finite fourth moments. Let γ̂j := T−1
∑T

t=1+p wtw
′
t−j and

γj := Ewtw
′
t−j. Assume that φw,j = O(jd−1) where −0.5 < d < 0.5. Then:

Evec(γ̂j − Eγ̂j)vec(γ̂k − Eγ̂k)
′ =


O(T 4d−2) , for 0.25 < d < 0.5

O(T−1 log T ) , d = 0.25,
O(T−1) , −0.5 < d < 0.25

All O(.) terms hold uniformly in 1 ≤ j, k ≤ p and 1 ≤ p ≤ T .
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Proof: The proof uses the results of Theorem 1, 3 and 5 of Hosking (1996). The main
difference is that we are interested in expressions uniformly in the lag whereas Hosking
(1996) deals with fixed lags.
First note that using Ω := Eεtε

′
t we have for some constant 0 < K < ∞ not depending

on j ∈ Z

‖γj‖2 = ‖
∞∑
i=j

φw,iΩφ′
w,i−j‖2 ≤ C

∞∑
i=j

‖φw,i‖2‖φw,i−j‖2 ≤ Kj2d−1

since ‖Ω‖2 < C, ‖φw,i‖2 ≤ Cki
d−1 for some K < ∞ (see Lemma 2, (Palma and

Zevallos, 2004)). The vector case is only notationally more complex and hence we only
show the result for the case of scalar wt.
Then we obtain

Eγ̂j γ̂k = T−2

T∑
t,s=1+p

Ewt+jwtwsws+k.

Note that Ewtwswrw0 = γt−sγr + γt−rγs + γtγs−r + κ4(t, s, r) for

κ4(t, s, r) :=
∞∑

a=−∞

φw,a+tφw,a+sφw,a+rφw,a(Eε4
t − 3(Eε2

t )
2)

where for notational simplicity φw,a = 0, a < 0 is used. It follows that Ew4
0 ≤ M4 < ∞

since ‖φ4
w,a‖2 = O(a4d−4) = o(a−2). Next

T−2

T∑
t,s=1+p

Ewt+jwtwsws+k = T−2

T∑
t,s=1+p

γjγk+γt−s+jγt−s−k+γt+j−s−kγt−s+κ4(t−s, t−s+j, k).

(25)
The first term here is equal to (T − p)2T−2γjγk = Eγ̂jEγ̂k independent of the value of
d.
The derivation of the bounds for the remaining terms in (25) will be done separately
for the different cases for d. Thus let 0.25 < d < 0.5 for the moment. The last term
in (25) is majorized by the first term in (A.2) of Hosking (1996) and hence can be
bounded by M4εT

−1γjγk where M4ε is the fourth cumulant of εt. In fact this holds for
any d < 0.5. The two middle terms can be dealt with using ‖γl‖2 ≤ Kl2d−1 as shown
above: ∣∣∣∣∣T−2

T∑
t,s=1+p

γt−s+jγt−s−k

∣∣∣∣∣ ≤ T−1

T−1−p∑
l=1−T+p

|γl+jγl−k|
T − |l| − p

T

≤ T−1

(
T−1−p∑

l=1−T+p

γ2
l+j

)1/2 (
T−1−p∑

l=1−T+p

γ2
l−k

)1/2
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and for j ≥ 0, using Lemma 3.2. (i) of Chan and Palma (1998), we have

T−1−p∑
l=1−T+p

γ2
l+j ≤

T−1+2j−p∑
l=1−T+p

γ2
l+j =

T−1+j−p∑
l=1−T−j+p

γ2
l = O((T − p + j)4d−1) = O(T 4d−1).

This holds for d 6= 0.25. For d = 0.25 the same argument shows the bound O(log T )
(cf. Hosking, 1996, top of p. 278). For j ≤ 0 the analogous argument can be used
extending the sum to the negative integers. Combining these expressions we obtain
Eγ̂j γ̂k − Eγ̂jEγ̂k = ∆j,k where E|∆j,k| ≤ MT 4d−2 for 0.25 < d < 0.5.
For d = 0.25 the bound on the last term in (25) is identical to the case 0.25 < d <
0.5. Further E|∆j,k| ≤ M(log T )/T for d = 0.25 according to standard summability

arguments showing that
∑T

j=1 j−1 = O(T log T ) (see e.g. Hosking (1996), top of p.
278). This shows the claim for d = 0.25.
For d < 0.25 it follows that the middle two terms are of order O(T−1) independent of
j, k, p. Hence E|∆j,k| ≤ M/T for d < 0.25. All bounds hold uniformly in 1 ≤ j, k ≤ p
and 1 ≤ p ≤ T . ¤
Inspecting the proof it follows that it also applies (with d = 0) to linear processes
vt =

∑∞
j=0 θv,jεt−j where (εt)t∈Z fulfills Assumption N if

∑∞
j=0 ‖θv,j‖2 < ∞.

Lemma 2 Let (εt)t∈Z fulfill Assumption N. Let vt,p =
∑∞

j=0 φp,jεt−j, t ∈ Z, p ∈ N.

Then if supp∈N
∑∞

j=0 ‖φp,j‖2
2 < ∞ it follows that supp∈N E‖vt,p‖4

2 < ∞.

Proof: The proof for the multivariate case is only notationally more complex, hence
only the univariate case will be dealt with. Then Ev4

t,p = 3(Ev2
t,p)

2 + κ4,p (see e.g.
the proof of Lemma 1 given above). Next since Ev2

t,p =
∑∞

j=0 φ2
p,jEε2

t it follows that

supp∈N Ev2
t,p < ∞. Further

κ4,p =
∞∑

j=0

φ4
p,jEε4

t ≤ Eε4
t

(
∞∑

j=0

φ2
p,j

)2

.

Hence supp Eκ4,p < ∞. ¤

Lemma 3 Let Γ denote the Gamma function and let Li(j) satisfy limj→∞Li(j) = 1
for i = 1, . . . , ku. Then define vt by ∆vt = ut, t > 0 and vt = 0, t ≤ 0, where ui,t =∑∞

j=0 θu,j,i(α
′
iεt−j), ‖αi‖2 = 1, (εt)t∈Z is i.i.d. with mean zero and finite fourth moments

and θu,j,i := Γ(di)
−1(j+1)(di−1)Li(j), for 0 < di < 1/2 and θu,j,i := aj,i−aj−1,i for j > 0

and θu,0,i := a0,i for aj,i := Γ(1+di)
−1(j+1)diLi(j) for −1/2 < di < 0. Further let wt =∑∞

j=0 θw,jεt−j for 0 < ‖
∑∞

j=0 θw,j‖2 < ∞ and θw,j := O(j−1−δ) for δ > 0. Then using

DT := diag
(
T−(d1+1), . . . , T−(dku+1)

)
and DT,0 := diag

(
T−(d1,0+1), . . . , T−(dku,0+1)

)
, for

di,0 := max(di, 0), we have (uniformly in p = o(T 1/3))

(i) DT

T∑
t=p+1

vtv
′
tDT

d→ Ξd, where det Ξd 6= 0 a.s.
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(ii) max
0≤j≤HT

‖DT,0

T∑
t=p+1

vtw
′
t−j‖2 = OP (1), where HT = o(T 1/3)

(iii) T−(1+max(di+dj ,0))

T∑
t=p+1

vi,tu
′
j,t = OP (1),

(iv) DT

T∑
t=p+1

vt−1ε
′
t = OP (1).

Proof: (i), (iii), and (iv) follow from Proposition 4.1 and Theorem 4.1 of Davidson and
Hashimzade (2007). For (ii), the convergence in distribution of T−(di,0+1)

∑T
t=p+1 vi,tw

′
j,t+1

follows from Theorem 4.1. of Davidson and Hashimzade (2007). The uniform (in j)
result can be derived from the following argument:

T−(di,0+1)

T∑
t=p+1

vi,tw
′
t−j = T−(di,0+1)

T∑
t=p+1

(vt,i − vt−j−1,i)w
′
t−j + T−(di,0+1)

T∑
t=p+1

vt−j−1,iw
′
t−j

= T−(di,0+1)

j∑
r=0

T∑
t=p+1

∆vt−r,iw
′
t−j + T−(di,0+1)

T∑
t=p+1

vt−j−1,iw
′
t−j

= T−di,0

j∑
r=0

(
T−1

T∑
t=p+1

ut−r,iw
′
t−j

)
+ T−(di,0+1)

T∑
t=p+1

vt−j−1,iw
′
t−j.

The first term is the sum of j +1 estimated covariances which can be dealt with using
Lemma 1:

j∑
r=0

(
T−1

T∑
t=p+1

ut−r,iw
′
t−j

)
=

j∑
r=0

Eut−r,iw
′
t−j+

j∑
r=0

(
T−1

T∑
t=p+1

[
ut−r,iw

′
t−j − Eut−r,iw

′
t−j

])
+O(pT−1)

which is of order O(pd0,i)+OP ((j+1)fT ) where fT = T 2d0,i−1 for 0.25 < d0,i < 0.5, fT =
T−1/2

√
log T for d0,i = 0.25 and fT = T−1/2 for d0,i < 0.25. Here

∑j
r=1 Eut−r−1,iw

′
t−j =

O(pd0,i) is used which is straightforward to derive. Hence the first term above is of
order o(1)+OP (jfT T−d0,i) = oP (1) for di > 0 and of order O(1)+OP (jT−1/2) = OP (1)
for di < 0 uniformly in 0 ≤ j ≤ T 1/3.¤

Lemma 4 Let vt,T − AT vt−1,T = ut, t ∈ N, AT = I − diag(c1, . . . , ck)/T, ci ≥ 0 for
i = 1, . . . k, where ut is stationary and ergodic with finite second moments generated
according to

∑∞
j=0 πu,jut−j = εt where (εt)t∈Z fulfills Assumption N, and where, for

πu(z) :=
∑∞

j=0 πu,jz
j, we have det πu(z) 6= 0, |z| ≤ 1 and

∑∞
j=0 ‖πu,j‖2 < ∞. The

recursions are started at v0,T = v0, T ∈ N which is assumed to be deterministic. Further
let wt =

∑∞
j=0 φε

w,jεt−j + φη
w,jηt−j where

∑∞
j=0 j‖φε

w,j‖2 < ∞,
∑∞

j=0 ‖φ
η
w,j‖2 < ∞ and

(ηt)t∈Z fulfills Assumption N and is independent of (εt)t∈Z.
Then:
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(i) E‖vt,T‖2
2 = O(t) uniformly in T .

(ii) E‖T−3/2
∑T

t=p+1 vt,T w′
t‖2

2 = O(T−1).

(iii) T−2
∑T

t=p+1 vt,T v′
t,T

d→
∫ 1

0
Jc(w)Jc(w)′dw where Jc(w) denotes an Ornstein-Uhlenbeck

process.

(iv) T−1
∑T

t=p+1 vt,T u′
t

d→
∫ 1

0
Jc(w)dB(w)′ + σu for some matrix σu. Here B(w) de-

notes the Brownian motion associated with T−1/2ut.

Proof: (i) According to the assumptions it follows that ut =
∑∞

j=0 φu,jεt (Lewis and
Reinsel, 1985, p. 395, l.3). Further

∑∞
j=−∞ ‖Eu0u

′
j‖2 < ∞ follows. The recursive

definition of vt,T implies that vt,T = At
T v0 +

∑t−1
i=0 Ai

T ut−i. Consequently

E‖vt,T‖2
2 = E(At

T v0+
t−1∑
i=0

Ai
T ut−i)

′(At
T v0+

t−1∑
i=0

Ai
T ut−i) = Ev′

0(A
t
T )′At

T v0+
t−1∑

i,j=0

Eu′
t−i(A

i
T )′Aj

T ut−j.

Since ci ≥ 0 for i = 1, . . . k, it follows that the elements of the diagonal matrix AT are
all less than one and hence v0(A

t
T )′At

T v0 = O(1). For the second term note that

|
t−1∑

i,j=0

Eu′
t−i(A

i
T )′Aj

T ut−j| ≤
t−1∑

i,j=0

‖Eut−iu
′
t−j‖2 ≤ t

∞∑
j=−∞

‖Eu0u
′
j‖2 = O(t).

(ii) We will only deal with the univariate case, the multivariate case is only nota-
tionally more difficult. The process (wt)t∈N can be decomposed as wt := wε

t + wη
t =

(
∑∞

j=0 φε
w,jεt−j) + (

∑∞
j=0 φη

w,jηt−j). Since εs and ηt are independent it follows that

Evt,T vs,T wtws = Evt,T vs,T wε
t w

ε
s + Evt,T vs,T Ewη

t w
η
s (26)

because Evt,T vs,T wε
t w

η
s = Evt,T vs,T wε

t Ewη
s = 0. Therefore the evaluations can be given

for wε
t and wη

t separately. All expectations exist due to assumed finite fourth moments.
The contribution to E‖T−3/2

∑T
t=p+1 vt,T wt‖2

2 of the second term involving wη
t can be

bounded as

T−3

T∑
t=1+p

T∑
s=1+p

|Evt,T vs,T Ewη
t w

η
s | ≤ T−3

T∑
t=1+p

T∑
s=1+p

t1/2s1/2|Ewη
t w

η
s | = O(T−1)

due to
∑∞

j=−∞ ‖Ewη
t w

η
t−j‖2 < ∞.

For the first term in (26), we use the Beveridge-Nelson decomposition (Phillips and
Solo, 1992) wε

t = φw(1)εt + w∗
t − w∗

t−1. The main strategy is to rewrite
∑T

j=p+1 vt,T wε
t

as a sum of several terms and then show that the expectation of the square of each
summand is of the required order. Of course, the cross terms are then of the same
order, as is straightforward to verify. It follows that

T−3/2
∑T

t=1+p vt,T wε
t = T−3/2

∑T
t=1+p vt,T εtφw(1) + T−3/2

∑T
t=1+p vt,T (w∗

t − w∗
t−1)

= T−3/2
∑T

t=1+p vt,T εtφw(1) − T−3/2
∑T−1

t=p (vt+1,T − vt,T )w∗
t

+T−3/2vT,T w∗
T − T−3/2vp,T w∗

p ..
(27)
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Since vT,T = AT
T v0 +

∑T−1
i=0 Ai

T uT−i it follows from finite fourth moments of ut that
Ev4

T,T = O(T 4) and finite fourth moments of w∗
T (see the proof of Lemma 1) then im-

ply via the Cauchy-Schwartz inequality that Ev2
T,T (w∗

T )2 = O(T 2). Therefore the
two last terms in the expression above contribute terms of the order O(T−1) to
E‖T−3/2

∑T
t=p+1 vt,T wt‖2

2 as required. Further vt,T = AT vt−1,T + ut and

E

(
T−3/2

T∑
t=1+p

vt−1,T εt

)2

= T−3

T∑
t,s=1+p

Evt−1,T εtvs−1,T εs = T−3

T∑
t=1+p

Ev2
t−1,T Eε2

t = O(T−1)

due to E{εtε
′
t|Ft−1} = Eεtε

′
t and Ev2

t,T = O(t). Obviously E(T−3/2
∑T

t=p+1 utεt)
2 =

O(T−1). Finally vt,T − vt−1,T = vt,T − AT vt−1,T + (AT − 1)vt−1,T = ut − c/Tvt−1,T and
therefore the square of the second term in (27) equals

T−3

T∑
t,s=1+p

ut+1us+1w
∗
t w

∗
s −

c

T
(vt,T us+1w

∗
t w

∗
s + vs,T ut+1w

∗
t w

∗
s) +

c2

T 2
vt,T vs,T w∗

sw
∗
t .

Now Ev4
t,T = O(t4) and hence Evt,T us+1w

∗
t w

∗
s ≤ (Ev4

t,T )1/4(Eu4
s+1)

1/4(E(w∗
t )

4)1/2 =
O(t). Therefore (ii) follows.
The proofs for (iii) and (iv) are omitted since they closely follow previously established
results. (iii) and (iv) are proved in Lemma 1 (c) and (d) of Phillips (1987) for the uni-
variate case (k = 1) and in Lemma 1 (iii) and (iv) of (Elliott, 1998) for the multivariate
case, in both cases under different assumptions on the process ut. The main fact used
in both cases, however, is that the process XT (t) = T−1/2σ−1

∑btT c
s=1 us, 0 ≤ t ≤ T

converges weakly to a Brownian motion. It is a standard result that this holds under
our assumptions (see e.g. Hall and Heyde, 1980, Theorem 4.1.). ¤
Lemma 5 Let the process (wt)t∈Z be generated according to Assumption P3 (i)-(iv)
and be partitioned as w′

t = [y′
t, z

′
2t]

′. Accordingly let εyt denote the first block of (Γ′)−1εt.

Define πw,0,T := I, Γ′ :=

(
γ′
⊥

γ′

)
, πw,j,T := (Γ′)−1[πv,jΓ

′ − πv,j−1

(
AT,wγ′

⊥
0

)
], j ≥

1. Let εyt,p :=
∑p−1

j=0[Is, 0]πw,j,T wt−j − [Is, 0](Γ′)−1πv,p−1

(
AT,wγ′

⊥
0

)
wt−p = εyt −∑∞

j=p[Is, 0](Γ′)−1πv,jvt−j. Then, for a suitable constant c < ∞ not depending on p,

E(‖εyt,p − εyt‖2
2)

1/2 ≤ c
∞∑

j=p

‖πv,j‖2 (28)

Proof: Using (11) and the definition of πw,j,T above to substitute for wt and πw,j,T re-
spectively in the equation for εyt,p we obtain εt,p =

∑p−1
j=0 πv,jvt−j where εt =

∑∞
j=0 πv,jvt−j.

Then (28) follows by Lewis and Reinsel (1985), p. 397, (2.9) and εyt,p = [Is, 0](Γ′)−1εt,p.
¤
Remark 1 The Lemma holds for both the stationary (see Assumption P1) and (co)-
integrated I(1) processes (see Assumption P2) as special cases when γ⊥ = 0 and c = 0,
respectively.
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Lemma 6 Let RT ∈ RgT×gT denote a sequence of (possibly random) matrices whose
dimension gT depends on the sample size T . Let R̂T denote a sequence of random
matrices such that ‖R̂T −RT‖2 = OP (fT ) where fT → 0. Then if supT∈N ‖R−1

T ‖2 < ∞
a.s. it follows that ‖R̂−1

T − R−1
T ‖2 = OP (fT ).

Proof: See Lewis and Reinsel (1985), p. 397, l. 11. ¤

Lemma 7[
A B
C D

]−1

=

[
A−1 0
0 0

]
+

[
−A−1B

I

] [
D − CA−1B

]−1 [
−CA−1 I

]
(29)

Proof: This can be verified by simple algebraic manipulations. ¤

Lemma 8 Under Assumption P1(i), (ii) and (iv) let Γp := E(x−
t )(x−

t )′ where x−
t =

[(x−
2t)

′, (x−
1t)

′]′ as defined in Theorem 2. Then supp∈N ‖Γ−1
p ‖2 < ∞.

Proof: Note that z1t = zν
1t + zε

1t where zν
1t = νt +

∑∞
j=1 θjνt−j and zε

1t =
∑∞

j=1 φjεt−j

are mutually independent. Consequently Ez1t−iz
′
1t−j = Ezν

1t−i(z
ν
1t−j)

′ + Ezε
1t−i(z

ε
1t−j)

′.
Letting xε

1t and xν
1t denote the components of x−

1t generated from εt and νt respectively
, it follows that

Γp = E


y−

t (y−
t )′ y−

t (z−2t)
′ y−

t (zε
1t−pz1−1)

′ y−
t (xε

1t)
′

z−2t(y
−
t )′ z−2t(z

−
2t)

′ z−2t(z
ε
1t−pz1−1)

′ z−2t(x
ε
1t)

′

zε
1t−pz1−1(y

−
t )′ zε

1t−pz1−1(z
−
2t)

′ zε
1t−pz1−1(z

ε
1t−pz1−1)

′ zε
1t−pz1−1(x

ε
1t)

′

xε
1t(y

−
t )′ xε

1t(z
−
2t)

′ xε
1t(z

ε
1t−pz1−1)

′ xε
1t(x

ε
1t)

′



+E


0 0 0 0
0 0 0 0
0 0 zν

1t−pz1−1(z
ν
1t−pz1−1)

′ zν
1t−pz1−1(x

ν
1t)

′

0 0 xν
1t(z

ν
1t−pz1−1)

′ xν
1t(x

ν
1t)

′

 def
= Γε

p + Γν
p.

Clearly 0 ≤ Γε
p, 0 ≤ Γν

p. Also the largest eigenvalues of both matrices are bounded
uniformly in p (see Theorem 6.6.10. of Hannan and Deistler (1988) for Γε

p; the nonzero
eigenvalues of Γν

p do not depend on p). Furthermore the matrix in the third and fourth
block row and block column of Γν

p is positive definite, since z1t contains the term νt.
For the heading subblock built from the first and second block row and columns of
Γε

p the smallest eigenvalue is bounded uniformly in p by Theorem 6.6.10. on p. 265 of
Hannan and Deistler (1988). Suppose then that the uniform bound on the eigenvalues
of Γp does not hold. Then there exists a sequence pT → ∞ and a sequence of unit norm
vectors xp such that x′

pΓpxp → 0. Then x′
pΓ

ε
pxp + x′

pΓ
ν
pxp → 0 and hence partitioning

xp = [x′
p,1, x

′
p,2, x

′
p,3, x

′
p,4]

′ where xp,i corresponds to the partitioning used previously
it follows that E(x′

p,3z
ν
1t−pz1−1 + x′

p,4x
ν
1t)(x

′
p,3z

ν
1t−pz1−1 + x′

p,4x
ν
1t)

′ → 0. It follows that
‖xp,3‖2 + ‖xp,4‖2 → 0. From Theorem 6.6.10 of Hannan and Deistler (1988) it also
follows that E(x′

p,1y
−
t + x′

p,2z
−
2t)(x

′
p,1y

−
t + x′

p,2z
−
2t)

′ → 0 implies ‖xp,1‖2 + ‖xp,2‖2 → 0.
But this produces a contradiction to ‖x‖2 = 1. This shows the claim. ¤
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Lemma 9 Let (wt)t∈Z, (εyt,p)t∈Z, and πw,j,T , j ≥ 0 be defined as in Lemma 5. Then,
under the noncausality hypothesis, H0 : γz1j = 0 for all j, and for T > max(ci), (4)
can be reformulated as

∆yt = Ψ0,p,T (γ′
⊥wt−1)+

p∑
j=1

Ξj,p,T vt−j+

(
pz1+1∑
j=1

ψz1j

)
z1t−pz1−1+

pz1∑
j=1

ψz1j(z1t−j−z1t−pz1−1)+εyt,p,

(30)

where supp,T (
∑∞

j=1 ‖Ξj,p,T‖2) < ∞, Ψ0,p,T := −[I : 0](Γ′)−1[I : 0]′−
∑p−1

j=1 π⊥,jA
−(j−1)
T,w −

[I : 0](Γ′)−1πv,p−1[I : 0]′A2−p
T , and Ξj,p,T := [Ξ1,j,p,T , Ξ2,j,T ] for Ξ1,j,p,T :=

∑p−1
h=j+1 π⊥,hA

−(h−j)
T,w +

(Γ′)−1πv,p−1[I : 0]′Aj−p+1
T for j = 1, . . . , p − 1, and Ξ1,p,p,T := 0, Ξ2,1,T := −[I :

0](I + πw,1,T )(Γ′)−1[0 : I]′, Ξ2,j,T := −[I : 0]πw,j,T (Γ′)−1[0 : I]′ for j = 2, . . . p − 1,
Ξ2,p,T = 0, and π⊥,j := [I : 0]πw,j,T (Γ′)−1[I : 0]′.

Remark 2 A similar reformulation is employed in (A.2) of Saikkonen and Lütkepohl
(1996) for the VAR case with AT,w = I. pure unit roots (AT,w = I). However, the
derivations and notation differ.

Proof: Using [ψyj, ψz2j] = −[I, 0]πw,j,T , j = 1, . . . , p−1, [ψyp, ψz2p] = [Is, 0](Γ′)−1πv,p−1

(
γ⊥A′

T,w,
)′

(since γz1j = 0 under H0) and subtracting yt−1 = [I : 0]wt−1 from both sides of (4) and
using wt = (Γ′)−1Γ′wt = (Γ′)−1((γ′

⊥wt)
′, v′

2,t)
′, for v2,t = [0 : I]vt, we obtain

∆yt = [I : 0]

[
−(Γ′)−1

[
γ′
⊥wt−1

v2,t−1

]
−

p∑
j=1

πw,j,T (Γ′)−1

[
γ′
⊥wt−j

v2,t−j

]]
+

pz1+1∑
j=1

ψz1jz1t−j+εyt,p.

(31)
Defining v1,t := [I : 0]vt = γ′

⊥wt − AT,wγ′
⊥wt−1 and noting that AT,w is invertible for

T > max(ci), the terms involving γ′
⊥wt−j in (31) can be re-expressed as:[

−[I : 0](Γ′)−1[I : 0]′ −
p∑

j=1

π⊥,jA
−(j−1)
T,w

]
γ′
⊥wt−1 −

p−1∑
j=1

p∑
h=j+1

π⊥,hA
−(h−j)
T,w v1,t−j.

Likewise, the terms involving z1t−j may be re-expressed as in (5),yielding (30).
Since, by using (11) to substitute for vj j = 0, 1, 2 . . . in

∑∞
j=0 πv,jvt−j = εt, πw,j,T

may be expressed as a linear finite lag function of πv,j,
∑∞

j=1 j‖πw,j,T‖ < ∞ follows by

Assumption P2 (iii). supp,T (
∑∞

j=1 ‖Ξ1,j,p,T‖2) ≤ [I : 0]
∑∞

j=1

∑∞
h=j+1 ‖πw,h,T‖2(Γ

′)−1[I :
0]′ < ∞ and absolute summability of Ξ2,j both follow. ¤

B Proof of Theorems

The proof of the theorems will be given based on the following lemma, which introduces
a new set of high level conditions sufficient for Assumptions HL to hold:
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Lemma 10 Let (wt)t∈Z, (εyt,p)t∈Z, and πw,j,T , j ≥ 0 be defined as in Lemma 5. As-
sume that z−t ∈ Rkzp is a vector, which is Ft−1 measurable such that yt = A(p)z−t +
εyt,p = [A1(p), A2(p), A3(p)][

(
z−

t,1

)′
,
(
z−t,2,p

)′
, z′3,t]

′ + εyt,p where z−t ∈ Rkzp is partitioned

as z−t = [
(
z−1,t

)′
,
(
z−2,t,p

)′
, z′

3,t]
′ such that z−t,1 =

[
z′

t−1,1, . . . , z
′
t−p1,1

]′ ∈ Rkz1 (where p1 is

fixed) and z3,t ∈ Rkz3 do not depend on p and z2,t,p =
[
z′2t−1, . . . , z

′
2t−p

]′
depends on p.

Further let p tend to infinity as a function of the sample size such that p3/T → 0 and
T 1/2

∑∞
j=p+1 ‖πv,j‖2 → 0 such that E(‖εyt,p − εyt‖2

2)
1/2 = o(T−1/2).

Then the following conditions are sufficient for Assumption HL to hold: There ex-
ists a matrix RT and a scaling matrix DT = diag(Ikz1T

−1/2, IT−1/2, FT ) (where FT =
diag(ft,1, . . . , ftkz3)) such that (λmax denotes a maximal eigenvalue)

max
T∈N

λmax(ERT ) = O(1) , λmax(RT ) = OP (1), λmax(R
−1
T ) = OP (1), (32)

RT =

 R1,1 RT,1,2 0
RT,2,1 RT,2,2 0

0 0 RT,3,3

 , (33)

R̂T := DT

T∑
t=p+1

z−t (z−t )′DT , such that ‖R̂T−RT‖2 = oP (p−1/2), and ER̂T = O(1) elementwise

(34)

sup
l∈Rkzp ,‖l‖2=1

T−1/2

T∑
t=p+1

(E‖l′DT z−t ‖2
2)

1/2 = O(1), (35)

vec

[
T∑

t=p+1

εyt(z
−
t )′DT R−1

T

(
I 0 0

)′] d→ Z, (36)

where Z ∼ N(0, Γ−1
1.2 ⊗ Σ), where Γ1.2 := limT→∞ R1,1 − RT,1,2R

−1
T,2,2RT,2,1 > 0.

Proof: Consider15

Â(p) :=
T∑

t=p+1

yt(z
−
t )′(

T∑
t=p+1

z−t (z−t )′)−1 = A(p) +
T∑

t=p+1

εyt,p(z
−
t )′DT (DT

T∑
t=p+1

z−t (z−t )′DT )−1DT

+ O(T−1) = A(p) +

(
T∑

t=p+1

εyt,p(z
−
t )′DT

)
R̂−1

T DT + O(T−1).

Now
T∑

t=p+1

εyt,p(z
−
t )′DT =

T∑
t=p+1

εyt(z
−
t )′DT +

T∑
t=p+1

(εyt,p − εyt)(z
−
t )′DT .

15The O(T−1) term is due to the dependence of A(p) on AT,z/T,AT,w/T in the local-to-unity case,
see Lemma 5.
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Here

E‖
T∑

t=p+1

(εyt,p − εyt)(z
−
t )′DT‖2 ≤

T∑
t=p+1

(E‖εyt,p − εyt‖2
2)

1/2(E‖DT (z−t )‖2
2)

1/2

= (T 1/2
(
E‖εy1,p − εy1‖2

2)
1/2

) (
T−1/2

T∑
t=p+1

(E‖DT (z−t )‖2
2)

1/2

)
= o(p1/2). (37)

Here (35) and Lemma 5 are used. Moreover letting εyt(i), i = 1, . . . , ky, denote a
coordinate of εyt we have

E(
T∑

t=p+1

εyt(i)(z
−
t )′DT )′(

T∑
t=p+1

εyt(i)(z
−
t )′DT ) =

T∑
t=p+1

Eε2
yt(i)EDT z−t (z−t )′DT = Eε2

y1(i)ER̂T

using the martingale difference property. Therefore ‖
∑T

t=p+1 εyt,p(z
−
t )′DT‖2 = OP (p1/2).

Consequently, we obtain ‖(Â(p) − A(p))D−1
T ‖2 = OP (p1/2) using (35) and (32, 34) in

combination with Lemma 6.
Then consider Σ̂ε := T−1

∑T
t=p+1 ε̂tε̂

′
t: We obtain

Σ̂ε =
1

T

T∑
t=p+1

(yt − Â(p)z−t )(yt − Â(p)z−
t )′

=
1

T

T∑
t=p+1

(εyt,p − (Â(p) − A(p))z−t )(εyt,p − (Â(p) − A(p))z−t )′

=
1

T

T∑
t=p+1

εyt,pε
′
yt,p −

1

T

T∑
t=p+1

εyt,p(z
−
t )′(Â(p) − A(p))′ − 1

T

T∑
t=p+1

(Â(p) − A(p))z−t ε′yt,p

+(Â(p) − A(p))

(
1

T

T∑
t=p+1

z−t (z−t )′

)
(Â(p) − A(p))′

= Σ + oP (1) + OP (p/T ) = Σ + oP (1).

Here the bound follows from T−1
∑T

t=p+1 εyt,pε
′
yt,p → Σ, which can be shown using

Lemma 5 and the ergodicity of (εt)t∈Z, implying that T−1
∑T

t=p+1 εtε
′
t → Σ almost

surely. Further ‖(Â(p)−A(p))D−1
T ‖2 = OP (p1/2), ‖R̂T‖2 = OP (1) and ‖

∑T
t=p+1 DT z−t ε′yt,p‖2 =

OP (p1/2) are used. This shows HL (i).
With respect to HL (ii) note that Γ̂−1

1.2 equals the (1,1) block of R̂−1
T . Then (34) in

combination with the bound on the norm of RT and R−1
T given in (32) imply HL (ii).

With respect to HL (iii) note that x−
1.2t = [Γ̂1.2, 0]D−1

T R̂−1
T DT z−t . Therefore

T−1/2

T∑
t=p+1

εyt,p(x
−
1.2t)

′ =
T∑

t=p+1

εyt,p(z
−
t )′DT R̂−1

T

 Γ̂1.2

0
0

 =
T∑

t=p+1

εyt(z
−
t )′DT R−1

T

 Γ̂1.2

0
0

+oP (1)
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since ‖
∑T

t=p+1(εyt − εyt,p)(z
−
t )′DT l‖2 = oP (1) similar to (37) and

∑T
t=p+1 εyt(z

−
t )′DT =

OP (p1/2) as used above. Then (36) and HL (ii) imply HL (iii). ¤

B.1 Proof of Theorem 2

Proof: The proof uses a number of results of Lewis and Reinsel (1985), henceforth
called LR. We will verify the conditions of Lemma 10 where z−1,t := x−

1t, z
−
2,t,p := x−

2t and

z3,t does not occur. Thus kzp = kz1pz1 + p(ky + kz2) + kz1. Consequently DT = T−1/2I.
Also, the assumptions of the theorem imply that all occurring variables are stationary
with bounded variance. Then ER̂T = (T − p)/TRT . The maximum eigenvalue of RT

is bounded uniformly in T ∈ N since z−t is a vector containing only lags of the vector
process [w′

t, z
′
1t]

′, which has bounded spectrum due to the summability assumptions
on the autoregression coefficients (see e.g. Hannan and Deistler, 1988, p. 265). The
bound on the minimum eigenvalue of RT is derived in Lemma 8. This verifies (32),
(33) and (35).
Each entry in R̂T − RT is equivalent to an estimated covariance at some lag up to
an approximation error due to the different limits of summation. Lemma 1 shows
that the variance of the estimators of the covariances are of order O(T−1), see also
Hannan (1976), Chapter 4. The change in the summation introduces an error of order
OP (pT−1) since the difference is a sum of a maximum of p terms each of variance
O(T−2). This shows that all entries in R̂T − RT are of order OP (T−1/2) and therefore
‖R̂T − RT‖2 = OP (pT−1/2). Then p/T 3 → 0 implies that pT−1/2 = o(p−1/2) showing
(34).
Finally (36) follows as in Theorem 3 of LR (see also Theorem 7.4.9. of Hannan and
Deistler, 1988). The only change in the arguments lies in the different definition of the
regressors and correspondingly the replacement of Γp of LR by RT . In the proof the
uniform bound on λmax(R

−1
T ) derived above is crucial. Details are omitted. ¤

B.2 Proof of Theorem 3

The proof is omitted because it is a special case of Theorem 4 provided below in which
AT,w = I and AT,z = I.

B.3 Proof of Theorem 4

Proof: The proof builds on (and generalizes) the results of Saikkonen and Lütkepohl
(1996), henceforth denoted as SP96. Essential in the developments is the reparame-
terization of the auxiliary model (4) using (30). Since we are interested in testing the
significance of ψz1j, j = 0, . . . , pz1 and not in the other parameters the reparameteri-
zation is immaterial to our purposes since the estimates of ψz1j in both, the original
model and equation (30), coincide.
Note that in (30) there are two variables containing nonstationary regressors: (γ′

⊥wt−1)
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and z1t−pz1−1. Assumption P3 allows for the existence of full column rank ma-
trices β ∈ R(n+kz1)×nz with 0 ≤ nz ≤ n + kz1 and β⊥ ∈ R(n+kz1)×(n+kz1−nz) such
that β′β⊥ = 016 where (ñt,⊥)t∈N, ñt,⊥ := β′[(γ′

⊥wt−1)
′, z′1t−pz1−1]

′ is stationary and
(ñt)t∈N, ñt := β′

⊥[(γ′
⊥wt−1)

′, z′1t−pz1−1]
′ is integrated allowing for no cointegrating re-

lation. Thus instead of the original regression, we can consider the regression

∆yt = [ψx1, ψ̃x2, Ψ̃0]

 z−1,t

z−2,t,p

z3,t

 + εyt,p = A(p, T )z−t + εyt,p,

where z−1,t := x̃−
1t = [(z1t−z1t−pz1−1)

′, . . . , (z1t−pz1−z1t−pz1−1)
′]′, z−2,t,p := [ñ′

t,⊥, v′
t−1, . . . , v

′
t−p+1, (γ

′wt−p)
′]′

and z3,t := ñt analogously to the definition in Lemma A.3. of SP96. Here (z−2,t,p)t∈Z
is stationary for given value of p. z−1,t := [(z1t − z1t−pz1−1)

′, . . . , (z1t−pz1 − z1t−pz1−1)
′]′

behaves essentially as a stationary process since z1t−j −Apz1+1−j
T,z z1t−pz1−1 is stationary

(as a finite sum of stationary terms) and therefore

z1t−j − z1t−pz1−1 = z1t−j − Apz1−j+1
T,z z1t−pz1−1 + (Apz1−j+1

T,z − 1)z1t−pz1−1,

where Apz1−j+1
T,z − 1 = O(T−1). Therefore it follows from Lemma 4 that the second

term does not influence any of the results results. Thus, it is sufficient to verify the
conditions of Lemma 10.
Define DT := diag(T−1/2I, T−1/2I, T−1I), with partitioning corresponding to the par-
titioning of z−t into z−1,t, z

−
2,t,p and z3,t and let R̂T := DT (

∑T
t=p+1 z−t (z−t )′)DT . Note that

in z−t the last kz3 coordinates are integrated, whereas the rest are stationary, apart
from lower order remainders. Further let

RT :=

 Ez−1,t(z
−
1,t)

′ Ez−1,t(z
−
2,t)

′ 0
Ez−2,t(z

−
1,t)

′ Ez−2,t(z
−
2,t)

′ 0

0 0 T−2
∑T

t=p+1 ñtñ
′
t

 ,

such that obviously (33) holds. Here the submatrix built of the first two block rows and
columns of RT has uniformly bounded eigenvalues (both from below and from above)
due to Lemma 8 as in the proof of Theorem 2. The nonsingularity (in probability) of the
(3,3) block of RT follows from the convergence in distribution (cf. Lemma 4 (iii), c = 0)
to an almost sure positive definite random matrix. Therefore λmax(RT ) = OP (1) and
λmax(R

−1
T ) = OP (1) establishing (32). ER̂T = O(1) is easy to verify from the results

of the proof of Theorem 2 and Eñtñ
′
t = O(t) from standard theory.

Lemma 1 for d = 0 and Lemma 4 (ii) imply that each entry in R̂T −RT has variance
uniformly of order O(T−1). Accordingly ‖R̂T −RT‖2 = OP (p/T−1/2) establishing (34)
for p = o(T 1/3).
Next consider E‖l′DT z−t ‖2

2 = E(T−1‖l′1z−1,t‖2
2 + T−1‖l′2z−2,t‖2

2 + T−2‖l′3z3,t‖2
2) where l′ =

[l′1, l
′
2, l

′
3] is partitioned according to the partitioning of z−t . According to Lemma 4

16Cointegration between γ′
⊥wt−1 and z1t−pz1−1 is allowed for, but not imposed. The no cointegra-

tion case is accommodated by taking nz = 0.

41



(i), we have E‖z3,t‖2
2 = O(t). Due to stationarity of the remaining terms we have

E‖l′DT z−t ‖2
2 = O(T−1), analogously to the proof in Theorem 2. Therefore (35) follows.

Finally, in
∑T

t=p+1 εyt(z
−
t )′DT R−1

T [I, 0, 0]′ the nonstationary terms do not occur due
to the block diagonal structure of RT . Thus analogous arguments as in the proof of
Theorem 2 imply that (36) holds. This concludes the proof. ¤

B.4 Proof of Theorem 5

Proof: The proof follows the same route as the proof of Theorem 2. The main
difference lies in the fact that the impulse response sequence corresponding to z1t is
not summable. Note, however, that only the process (z1t) has long-memory whereas
yt and z2t remain short-memory processes.
Hence let DT = T−1/2I and RT = Ez−t (z−t )′, where z−t is defined as in the proof
of Theorem 2. Accordingly R̂T := T−1

∑T
t=p+1 z−t (z−t )′. In order to show ‖R̂T −

RT‖2 = oP (p−1/2), note that every entry in this matrix converges in mean square
since, according to Lemma 1, the variances are of order O(Tmax(4d−2,−1)) for d 6= 0.25
and of order O(T−1 log T ) for d = 0.25. Note that Eγ̂j = (T − p)/Tγj. Hence ER̂T =

(T − p)/TRT . Therefore the expectation of the sum of squared entries of R̂T − RT

is of order O(T 4d−2p + p2T−1) for 0.25 < d < 0.5, of order O(pT−1 log T + p2T−1)
for d = 0.25 and of order O(pT−1 + p2T−1) for d < 0.25. Here we use the fact that
there are only O(p) terms involving the long-memory processes since yt and z2t are
short memory processes contributing p2 terms of order O(T−1). Therefore, in order for
‖R̂T − RT‖2 = oP (p−1/2) it is sufficient that p2T 4d−2 + p3T−1 → 0 for 0.25 < d < 0.5,
(p2 log T + p3)/T → 0 for d = 0.25, and in all other cases p3T−1 → 0. This shows (34).
The bounds (32) on the eigenvalues of RT follow from Lemma 8 (which did not use
the short memory assumption on z1t) as in the proof of Theorem 2. Since z3,t does not
occur (33) follows trivially. Stationarity and finite variances of (z1t)t∈N implies (35) as
in the proof of Theorem 2.

It remains to verify (36). In the following we will only deal with the scalar output
case (i.e. ky = 1). The multivariate case is only notationally more difficult. It is suf-

ficient to show that T−1/2
∑T

t=p+1 εyt(α
′
pz

−
t ) is asymptotically normal with α′

pRT αp →
α′
∞R∞α∞ for vector sequences αp such that 0 < c < infp∈N ‖αp‖2 ≤ supp∈N ‖αp‖2 ≤ C

for some constants 0 < c < C < ∞ and ‖[α′
p, 0]′ − α∞‖2 → 0 holds. Clearly the

columns of R−1
T fulfill these requirements. In this respect we use the three series cri-

terion of Hall and Heyde (1980, Theorem 3.2, p. 58): With XTt = εyt(α
′
pz

−
t )/

√
T we

obtain that (XTt)1≤t≤T is a martingale difference sequence with respect to the sigma
field generated by εs, νs, s ≤ t. In the following we will only deal with the univariate
case. The multivariate case follows as usual from the Cramer-Wold device (see e.g.

Davidson, 1994, Theorem 25.5.). Then Theorem 3.2. states that
∑T

t=1 XTt
d→ N (0, η2)

if

(i) max
1≤t≤T

|XTt|
p→ 0,
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(ii)
T∑

t=1

X2
Tt

p→ η2(a constant),

(iii) E max
1≤t≤T

X2
Tt is bounded in T.

Assume that α′
pRT αp → η̃2 (for some constant η̃) as p → ∞. Then it holds that

Eε2
yt(α

′
pz

−
t )2 = Eε2

ytE(αpz
−
t )2 < M

for some constant 0 < M < ∞ uniformly in p ∈ N due to the conditional homoskedas-
ticity and the assumption of finite second moments of z−t . Then

E max
1≤t≤T

X2
Tt ≤

T∑
t=1

EX2
Tt ≤ M

such that (iii) follows. Secondly,

T∑
t=1

X2
Tt = T−1

T∑
t=1

ε2
yt(α

′
pz

−
t )2 = T−1

T∑
t=1

(ε2
yt−Eε2

yt)α
′
pz

−
t (z−t )′αp+

(
T−1

T∑
t=1

α′
pz

−
t (z−t )′

)
αpEε2

yt

where α′
p(T

−1
∑T

t=1 z−t (z−t )′)αp = α′
pR̂T αp → η̃2 since ‖R̂T − RT‖2 → 0. Therefore

it is sufficient to show that T−1
∑T

t=1(ε
2
yt − Eε2

yt)α
′
pz

−
t (z−t )′αp converges to zero. Ac-

cording to Davidson (1994, Theorem 19.7) this hold for our assumptions if |(ε2
yt −

Eε2
yt)(α

′
pz

−
t )2| can be shown to be uniformly integrable (uniformly over t and p). Now

E(ε2
yt − Eε2

yt)
2(α′

pz
−
t )4 = (E(ε2

yt − (Eε2
yt))

2)(Eα′
pz

−
t )4 due to the i.i.d. assumption on

(εt)t∈Z. But E(ε2
yt − (Eε2

yt))
2 < ∞ due to finite fourth moments. In order to show

that supp∈N E(α′
pz

−
t )4 < ∞ for supp ‖αp‖2 < ∞ we use Lemma 2: Clearly α′

pz
−
t =∑∞

j=0 φν
p,jνt−j+φε

p,jεt−j. Therefore it is sufficient to show that supp

∑∞
j=0 ‖[φν

p,j, φ
ε
p,j]‖2

2 <
∞. But this follows since since supp ‖αp‖2 is bounded by assumption and for each of
yt, z1t and z2t the summability assumption holds, which is straightforward to verify.
Uniform integrability then follows from Davidson (1994, Theorem 12.10.). Hence it
follows that (ii) holds.
Finally (i) holds since it is implied by (I(.) denoting the indicator function)

T∑
t=1

E
[
X2

TtI(X
2
Tt > ε)

]
= TE

[
X2

T1I(X
2
T1 > ε)

]
→ 0

for each ε > 0 (see Hall and Heyde, 1980, (3.6), p. 53). Here convergence is implied by
E[εy1(α

′
pz1)]

4 = Eε4
y1E(α′

pz1)
4 < ∞ as shown previously. This concludes the proof. ¤

B.5 Proof of Theorem 6

Proof: The proof of Theorem 6 combines the arguments from the proof of Theorems
3 and 5. Analogously to equation (30) we obtain

yt =

p−1∑
j=1

πjyt−j+

p∑
j=1

ψjz2t−j+

(
pz1+1∑
j=1

ψz1j

)
B−1(Bz1t−pz1−1)+

pz1∑
j=1

ψz1j(z1t−j−z1t−pz1−1)+εyt,p
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where B := [β, β⊥]. Note that z1t−j − z1t−pz1−1 =
∑pz1

i=j ∆z1t−i =
∑pz1

i=j x1t−i is station-

ary for each 1 ≤ j < pz1. Define z−1t :=
[
z′1t−1 − (z1t−pz1−1)

′, . . . , z′
1t−pz1

− (z1t−pz1−1)
′]′ , z−2,t,p :=

[(y−
t )′, (z−2t)

′, (β′z1t−pz1−1)
′]′ and z3,t := β′

⊥z1t−pz1−1. Then in z−t := [(z−1,t)
′, (z−

2,t,p)
′, z′3,t]

′

the last coordinates (i.e. z3,t) are fractionally integrated while the remaining coor-

dinates are stationary. Define DT := diag
(
T−1/2I, T−(d1+1), . . . , T−(dcz1+1)

)
, R̂T :=

DT

∑T
t=p+1 z−t (z−t )′DT , and

RT :=

 Ez−1,t(z
−
1,t)

′ Ez−1,t(z
−
2,t)

′ 0
Ez−2,t(z

−
1,t)

′ Ez−2,t(z
−
2,t)

′ 0

0 0 [R̂T ]3,3

 .

Obviously (33) holds with this choice. The uniform bound on the eigenvalues of RT

follows as in the proof of Theorem 5 and from

diag
(
T−(d1+1), . . . , T−(dcz1+1)

) T∑
t=p+1

z3,tz
′
3,tdiag

(
T−(d1+1), . . . , T−(dcz1+1)

) d→ Ξ (38)

where Ξ is an a.s. positive definite random variable by Lemma 3 (i). Consequently
(32) holds.
Next we show that (34) also holds. R̂T − RT consists of six types of subblocks: The
terms involving only z−1,t and z−

2,t can be analyzed exactly as in the proof of Theorem 5,
with dmax := max(d1, . . . , dkz1) replacing d: The upper bound on the increase of p as a
function of the sample size shows that the sum of squares of these entries is of order
OP (p−1). The (3, 3) block of R̂T −RT is zero by definition. The remaining two terms in-
clude terms of the form T−(dr+3/2)

∑T
t=p+1[z3,t]r[(β

′z1t−j)
′]s = Op(T

max(dr+ds,0)−dr−1/2)

T−(dr+3/2)
∑T

t=p+1[z3,t]r[∆z′1t−j]s = Op(T
max(dr+d1,...,dr+dcz ,0)−dr−1/2) by Lemma 3 (iii).

Both terms are op(p
−1/2) since |ds|, |dr| < 0.5 and, by Assumption P5 (iii), p <

Tmins(1−2ds,(1+2dr)/3,1/3) for r = 1, . . . , cz1 and s = 1, . . . , kz1. Likewise, defining dr,0 :=
max(0, dr), it follows from Lemma 3 (ii) that17

max
0≤j≤HT

∥∥∥∥∥T−dr−3/2

T∑
t=p+1

[z3,t]r[y
′
t−j, z

′
2t−j]

∥∥∥∥∥
2

= OP (T dr,0−dr−1/2), for HT = o(T 1/3), r = 1, . . . , cz1.

Therefore the sum over these terms is of order OP (pT d0,r−dr−1/2) = op(p
−1/2) since,

by Assumption P5 (iii), we have both p < T 1/3, as needed for 0 ≤ dr < 1/2, and
p < T 2/3(1/2+dr) as needed for −1/2 < dr < 0.
Further E[z3,t]

2
r = O(T 2dr+1) follows from Davidson and Hashimzade (2007). Thus

(34) holds under the restrictions on p imposed in Assumption P5.
From (38) it also follows that the contribution of this block to E‖l′DT z−t ‖2

2 is O(1),
showing (35). Finally the arguments to show (36) are analogous to those used in
the proof of Theorem 5 since the nonstationary components are not involved. This
concludes the proof. ¤

17Note that the summability condition of Assumption P5 (i) implies the rate condition on θw,j

assumed in Lemma 3.
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B.6 Proof of Theorem 7

Proof: The strategy of the proof is to apply, where possible, the previously proved
results within each regime. We will verify the conditions of Lemma 10 where z−1,t :=
x−

1t, z
−
2,t,p := x−

2t and z3,t does not occur. Thus kzp = kz1 (pz1 + 1) + p(ky + kz2) and

DT = T−1/2I. Define Sj =
{

pz1 + 2 + b
∑j−1

k=0 ωkT c, . . . , b
∑j

k=1 ωkT c
}

as the data

range that would result if restricted to regime j only. Sj omits pz1 + 1 discarded lags,

denoted by Dj :=
{
b
∑j−1

k=0 ωkT c + 1, . . . , pz1 + 1 + b
∑j−1

k=0 ωkT c
}

. Let D :=
⋃J

j=1 Dj.

Define the within-regime variance Γ(j) := E
[
z−t (z−t )′I (t ∈ Sj)

]
− µ(j)µ(j)′ and define

R :=
∑J

j=1 ωjR(j), where R(j) := E
[(

z−t − µ̄
) (

z−t − µ̄
)′

I (t ∈ Sj)
]

as a measure of

the overall average variation. Noting that R(j) = Γ(j) + (µ(j) − µ̄) (µ(j) − µ̄)′ we
decompose R as R =

∑J
j=1 ωjΓ(j) +

∑J
j=1 ωj (µ(j) − µ̄) (µ(j) − µ̄)′ .

Using the same argument as was used directly for R in the proof of Theorem 5 for Γ(i)
we have λmax(Γ(i)), λmax (Γ(i)−1) = O(1). We also have λmax

(
(µ(j) − µ̄) (µ(j) − µ̄)′

)
=

O(1) despite the fact that the dimension µ(j)− µ̄ grows in p, since it consists of pz1 +1
repeated copies of the same vector extended to the correct dimension by adding zeros.
Here pz1 is fixed independently of the sample size. Then it follows (Lütkepohl, 1996,
p. 74) that

λmax (R) ≤
J∑

j=1

ωjλmax (Γ(j)) +
J∑

j=1

ωjλmax

(
(µ(j) − µ̄) (µ(j) − µ̄)′

)
= O (1) and

λmax

(
R−1

)
≤

(
J∑

j=1

ωjλmin (Γ(j))

)−1

= O(1)

where J is fixed. This shows (32).
Next define sample counterparts:

z̄(j) := bωjT c−1
∑
t∈Sj

z−t , z̄ := T−1

T∑
t=p+1

z−t , Γ̂(j) := bωjT c−1
∑
t∈Sj

(
z−t − µ (j)

) (
z−

t − µ (j)
)′

,

R̂(j) := bωjT c−1
∑
t∈Sj

(
z−t − µ̄

) (
z−t − µ̄

)′
and note that

E
∥∥∥R̂(j) − R(j)

∥∥∥
2

≤ E
∥∥∥Γ̂(j) − Γ(j)

∥∥∥
2
+ 2E ‖(z̄(j) − µ (j))‖2

(∥∥µ (j)′
∥∥

2
+ ‖µ̄′‖2

)
+(pz1 + 1)

∥∥[ωjT ]−1µ̄µ̄′∥∥
2

where the last term results from the sum over the pz1 + 1 discarded lags in Dj.

E ‖(z̄(j) − µ (j)) I (t ∈ Sj)‖2
2 = (pz1 + 1)

kz1∑
i=1

E
[
(x̄1ti(j) − E [x1tiI (t ∈ Sj)])

2 I (t ∈ Sj)
]
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+ p

ky+kz2∑
i=1

E
[
(x̄2ti(j) − E [x2tiI (t ∈ Sj)])

2 I (t ∈ Sj)
]

= O
(
pT−1

)
.

(39)

By similar argument ‖µ̄‖2, ‖µ(j)‖2 = OP (1) and ‖pz1[ωjT ]−1µ̄µ̄′‖2 ≤ OP (pT−1). Thus∥∥∥R̂(j) − R(j)
∥∥∥

2
≤

∥∥∥Γ̂(j) − Γ(j)
∥∥∥

2
+ OP

(
pT−1

)
. (40)

Next define R̂ := T−1
∑T

t=p+1

(
z−t − z̄

) (
z−t − z̄

)′
and note that

R̂ =
J∑

j=1

ωjR̂(j) +
J∑

j=1

T−1
∑
t∈Dj

(
z−t − z̄

) (
z−

t − z̄
)′

=
J∑

j=1

ωjR̂(j) + OP

(√
pT−1

)
, (41)

since (pz1+1)T−1E
∥∥∥(

z−t − z̄
) (

z−t − z̄
)′∥∥∥

2
≤ (pz1+1)T−1E

[∥∥(
z−t − z̄

)∥∥2

2

]
= O (pT−1) ,

where the last step follows by an argument similar to (39). Then by (40) and (41)

∥∥∥R̂ − R
∥∥∥

2
≤

J∑
j=1

ωj

∥∥∥Γ̂(j) − Γ(j)
∥∥∥

2
+ OP

(√
pT−1

)
. (42)

The same arguments as in the proofs of Theorems 2 and 5 show
∥∥∥Γ̂(j) − Γ(j)

∥∥∥
2

=

oP

(
p−1/2

)
since these do not involve breaks. The condition ER̂T = O(1) follows from

arguments analogous to those employed in the previous proofs above. This shows (34).
Next write

T−1

T∑
t=p+1

(
E

∥∥l′
(
z−t − µ̄

)∥∥2

2

)1/2

≤ 21/2

J∑
j=1

T−1
∑
t∈Sj

(
E

∥∥l′
(
z−

t − µ(j)
)∥∥2

2

)1/2

+21/2

J∑
j=1

T−1
∑
t∈Sj

(
‖l′ (µ(j) − µ̄)‖2

2

)1/2

+
J∑

j=1

T−1
∑
t∈Dj

(
E

∥∥l′
(
z−t − µ̄

)∥∥2

2

)1/2

.

For the last term in (43) we have
(
E

∥∥l′
(
z−t − µ̄

)∥∥2

2

)1/2

= OP (p) by arguments similar

to those directly above (39). It follows that
∑J

j=1 T−1
∑

t∈Dj

(
E

∥∥l′
(
z−t − µ̄

)∥∥2

2

)1/2

=

O (pT−1) = o (1). For the middle term in (43) we have
∑J

j=1 T−1
∑

t∈Sj

(
‖l′ (µ(j) − µ̄)‖2

2

)1/2
=∑J

j=1b(Tωj −pz1−1)c/T ‖l′ (µ(j) − µ̄)‖2 = O (1) by argument similar to (39). Finally

the first term in (43) is also O(1) since J is fixed and T−1
∑

t∈Sj

(
E

∥∥l′
(
z−t − µ(j)

)∥∥2

2

)1/2

=

O (1) by the same arguments as in the proofs of theorems 2 and 5. This establishes
(35).
As in the proof of Theorem 5, we will show that T−1/2

∑T
t=1 εytα

′
p

(
z−t − µ̄

)
converges
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to the normal distribution given in (36) by verifying the three conditions of (Hall and
Heyde, 1980, Theorem 3.2, p. 58) for XTt := εytα

′
p

(
z−t − µ̄

)
/
√

T in the scalar case.
The multivariate case again follows from the Cramer-Wold device.
Condition (ii) of Hall and Heyde (1980, Theorem 3.2, p. 58) follows from

E max
1≤t≤T

X2
Tt ≤

T∑
t=1

EX2
Tt = E

[
ε2

yt

]
α′

p

J∑
j=1

ωjE
[(

z−t − µ̄
) (

z−t − µ̄
)′]

αp = E
[
ε2

yt

]
α′

pRαp.

For condition (ii)

T∑
t=1

X2
Tt = E

[
ε2

ty

]
α′

pR̂
′αp + T−1

T∑
t=1

(
ε2

ty − E
[
ε2

ty

])
α′

p

(
z−t − µ̄

) (
z−t − µ̄

)′
αp (43)

Note that
∥∥∥Γ̂ (j) − Γ(j)

∥∥∥
2
→p 0 by the same arguments as in Theorems 2 and 5 and

therefore by (42), this implies that
∥∥∥R̂ − R

∥∥∥
2
→p 0, so that the first term in (43)

converges in probability to η̃2 = E
[
ε2

ty

]
α′

pRαp. The second term in (43) converges in
probability to zero by the same arguments as in the proof of Theorem 5 (Lemma 2
implies that E

[
(α′

p

(
z−t − µ(j)

)
)4

]
and therefore E

[
(α′

p

(
z−t − µ

)
)4

]
is bounded). Not-

ing that
∑T

t=1 E [X2
TtI (X2

Tt > ε)] =
∑J

j=1bTωjcE [X2
TtI (t ∈ Sj) I (X2

Tt > ε)], condition
(i) also follows by the similar arguments as in Theorem 5. ¤
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Table 1: Rejection rates under the null hypothesis of Granger noncausality: stationary,

nonstationary, and cointegrated models.

Simulation DGP

Method sample Levels Difference VECM VECM

size VAR(1) VAR(1) δ′ = δ′ =

(δ = 0) (δ = 0) (1, 0, 0) (0, 1, 0)

50 0.089 0.211 0.124 0.069

Levels- 100 0.061 0.175 0.081 0.062

VAR 200 0.057 0.140 0.069 0.045

500 0.053 0.139 0.068 0.041

50 0.153 0.064 0.895 0.057

Dif- 100 0.227 0.058 0.999 0.064

VAR 200 0.432 0.050 1.000 0.061

500 0.735 0.064 1.000 0.043

50 0.104 0.110 0.152 0.067

Toda 100 0.059 0.080 0.113 0.065

Phillips 200 0.047 0.071 0.086 0.046

500 0.051 0.075 0.089 0.044

50 0.097 0.137 0.099 0.068

Surplus- 100 0.055 0.086 0.055 0.068

VARX 200 0.058 0.060 0.047 0.044

500 0.052 0.060 0.057 0.060
Table entries show empirical rejection rates under the null hypothesis for a nominal five percent test. In
Columns 3-4, the data is generated by (eq. 15, with δ = 0) and (eq. 16, with δ = 0), respectively. In
Columns 5 and 6 the data is generated by (eq. 17), with (δ1, δ2, δ3) = (1, 0, 0) and (δ1, δ2, δ3) = (0, 1, 0),
respectively. In all cases the residuals are generated by (14) with σ12 = −0.8. In Panel 1 (levels-VAR),
Granger-causality is tested using a VAR(2) in levels. Panels 2-4 employ tests based on a VAR(1) in
first-differences, Toda and Phillips (1993), and the surplus-lag ARX(2,3), respectively.
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Table 2: Rejection rates under the null hypothesis of Granger noncausality: local-to-

unity models.
Simulation DGP

Method sample no- z1t− yt-

size cointegration adjusts; adjusts;

(18, δ = 0) (19, δ = 0) (20, δ′ = (0, 0))

50 0.126 0.072 0.084

Levels- 100 0.091 0.059 0.069

VAR 200 0.079 0.050 0.074

500 0.096 0.042 0.062

50 0.103 0.074 0.336

Dif- 100 0.059 0.069 0.692

VAR 200 0.051 0.058 0.969

500 0.055 0.047 1.000

50 0.143 0.083 0.390

Toda- 100 0.130 0.072 0.326

Phillips 200 0.126 0.052 0.344

500 0.130 0.049 0.332

50 0.099 0.076 0.090

Surplus- 100 0.058 0.057 0.052

VARX 200 0.042 0.041 0.060

500 0.066 0.057 0.059
Table entries show empirical rejection rates under the null hypothesis for a nominal five percent test.
In Column 3, the data is generated by (eq. 18, with δ = 0). In Columns 4-5 the data is generated
from local-to-unity models with cointegration. In Column 4, it is generated by (eq. 19, with δ = 0),
in Column 5 it is simulated from (eq. 20, with δ1 = δ2 = 0). In all cases the local-to-unity (LTU)
parameter is set to c = −5.0 and the residuals are generated by (14) with σ12 = −0.8. In Panel 1
(levels-VAR), Granger-causality is tested using a VAR(2) in levels. Panels 2-4 employ tests based on
a VAR(1) in first-differences, Toda and Phillips (1993), and the surplus-lag ARX(2,3), respectively.
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Table 3: Rejection rates under the null hypothesis of Granger noncausality: fractionally

integrated models
Simulation DGP

Method no cointegration test cointegration

(eq. 22, δ = 0) (eq. 23, δ′ = (0, 0))

d = 0.4 d = 0.8 d = 0.4 d = 0.8

50 0.100 0.155 0.097 0.164

Levels- 100 0.091 0.129 0.086 0.124

VAR 200 0.083 0.111 0.061 0.136

500 0.070 0.111 0.055 0.116

50 0.037 0.059 0.065 0.139

Dif- 100 0.045 0.052 0.061 0.244

VAR 200 0.064 0.055 0.064 0.504

500 0.049 0.054 0.058 0.920

50 0.128 0.106 0.126 0.120

Toda- 100 0.108 0.073 0.072 0.100

Phillips 200 0.082 0.082 0.042 0.100

500 0.067 0.090 0.048 0.129

50 0.098 0.125 0.103 0.126

Surplus- 100 0.092 0.093 0.087 0.080

VARX 200 0.078 0.064 0.061 0.069

500 0.070 0.068 0.057 0.052
Table entries show empirical rejection rates under the null hypothesis for a nominal five percent
test. In Columns 3 and 4 the data is simulated from (eqs. 21 & 22, with δ = 0), for d = 0.4
and d = 0.8, respectively. In Columns 5 and 6, the data is generated by (eqs. 21 & 23, with
δ1 = δ2 = 0), for d = 0.4 and d = 0.8, respectively. In all cases the residuals are generated by
(14) with σ12 = −0.8. In Panel 1 (levels-VAR), Granger-causality is tested using a VAR(2) in
levels. Panels 2-4 employ tests based on a VAR(1) in first-differences, Toda and Phillips (1993),
and the surplus-lag ARX(2,3), respectively.
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Figure 1: Size-Adjusted Power (power - actual size + nominal size): DGP is the

stationary levels VAR in (15): I(0) series; T = 100.
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Figure 2: Size-Adjusted Power (power - actual size + nominal size): DGP is the VAR

in differences in (16): Non-cointegrated I(1) series; T = 100.
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Figure 3: Size-Adjusted Power (power - actual size + nominal size): DGP is the VECM

in (17) with (δ1, δ2) = (0, 1) and δ3 varying across the x-axis, T = 100.
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Figure 4: Size-Adjusted Power (power - actual size + nominal size): DGP is the VECM

in (17) with (δ1, δ3) = (1, 0) and |δ2| varying across the x-axis; T = 100.

52



−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

distance from null hypothesis (δ)

si
ze

−
a

d
ju

st
e

d
 p

o
w

e
r

Size−adjusted power comparison (sample size, T = 100)
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Figure 5: Size-Adjusted Power (power - actual size + nominal size): DGP is the VECM

in (17) with (δ2, δ3) = (1, 0) and |δ1| varying across the x-axis; T = 100.
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Size−adjusted power comparison (sample size, T = 100)
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Figure 6: Size-Adjusted Power (power - actual size + nominal size): DGP is the

quarterly seasonal levels VAR in (eq. 24, s = 4, a22(s) = 0.3); T = 100.
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Figure 7: Size-Adjusted Power (power - actual size + nominal size): DGP is monthly

seasonal levels VAR in (eq. 24, s = 12, a22(s) = 0.3); T = 100.
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Figure 8: Size-Adjusted Power (power - actual size + nominal size): DGP is VAR(1)

in levels without seasonal component (eq. 24 with a22(s) = 0); T = 100.
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