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Abstract

We compare the finite sample power of short and long-horizon tests in nonlinear predictive

regression models of regime switching between bull and bear markets, allowing for time

varying transition probabilities. As a point of reference, we also provide a similar comparison

in a linear predictive regression model without regime switching. Overall, our results do not

support the contention of higher power in longer horizon tests in either the linear or nonlinear

regime switching models. Nonetheless, it is possible that other plausible nonlinear models

provide stronger justification for long-horizon tests.
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1 Introduction

Long-horizon predictive regression tests have been the subject of substantial interest in both

empirical finance and financial econometrics, following influential applications to stock return

predictability, [Fama and French (1988b), Campbell and Shiller (1988)], exchange rate prediction

[Mark (1995), Chinn and Meese (1995)] and the term structure of interest rates [Fama and Bliss

(1987), Cutler et al. (1991)]. The strong empirical results, including large R-squares and t-

statistics, observed in long-horizon stock return regressions have been particularly influential in

the finance literature, as one of several important findings leading to the conclusion by the Royal

Swedish Academy of Sciences (2013) Nobel Press release that

There is no way to predict the price of stocks and bonds over the next few days or

weeks. But it is quite possible to foresee the broad course of these prices over longer

periods, such as the next three to five years.

Similarly, in his survey article, Cochrane (1999, “New Facts in Finance”) cites the predictability

of stock returns at long horizons as one of the three most important new facts in finance.

This paper asks whether there is any long-horizon power advantage in empirically plausible

nonlinear models using valid econometric tests. In particular, we compare the power of short and

long-horizon predictive regressions under the assumption that the data is generated by nonlinear

Hamilton (1989) style regime switching models. These models have been successfully used for

some time to model long term swings in foreign currency exchange rates [Engel and Hamilton

(1990), Bollen et al. (2000), Dewachter (2001), Cheung and Erlandsson (2005)]. A more recent

literature develops similar models to capture bull and bear runs (or multiple states) in stock

markets [Maheu and McCurdy (2000), Chauvet and Potter (2000), Guidolin and Timmermann

(2005), Guidolin and Hyde (2010), Maheu et al. (2012)]. Schaller and Norden (1997) and Guidolin

and Timmermann (2005) estimate predictive regressions with regime switches. To our knowledge,

no one has considered the power of long-horizon regressions in these models, although Kilian

(1999) mentions this avenue.

Overall, our results are not supportive of long-horizon regression. Long-horizon tests can

show modest size-adjusted power gains using a standard t-test in the linear model. Using more

powerful tests, we find no power advantages at long horizons. Short-horizon tests have as good

or better power. Long-horizons tests fare no better (and often worse) in bull/bear regime shift

models, even when the regressor is predictive of the regime shift itself. In the context of long-

horizon IVX tests, we find that the power comparison depends on both the horizon and the

tuning parameter determining the degree of filtering used to create the instrument. Nonetheless,

we find that with a good choice of this tuning parameter, the short run IVX can provide as

good or better power as its long run counterpart in both linear and regime switching predictive

regression settings.
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The remainder of the paper is organized as follows: Section 2 reviews the literature and

provides the background and motivation for our study. In Section 3 we introduce the regime

shifting predictive regression model that is used as a data generating process for our power

comparison. Section 4 describes the data. Section 5 presents the empirical estimates of the

regime shift model used to anchor our simulations. Section 6 describes the short and long-

horizon specifications and tests employed in the power comparisons. Section 7 provides an

extensive simulated power comparison of short and long-horizon regressions using two different

long-horizon specifications and several long-horizon tests.

2 Literature, Background, and Motivation

The dependent variables in long-horizon regressions are typically multi-year asset returns ob-

served at a monthly or quarterly frequency, defined by

rkt+k =
k∑

j=1

rt+j , (1)

where k is the horizon period and rt is the one period return. The long-horizon return is

regressed on a pre-determined predictor xt, such as a dividend or earnings price ratio, resulting

in the long-horizon regression specification

rkt+k = β0(k) + β1(k)xt + εk1,t+k (2)

with tests for long-horizon predictability based on the restriction

H0 : β1(k) = 0. (3)

The special case in which k = 1 corresponds to the short-horizon predictive regression

rt+k = β0 + β1xt + ε1,t+1, (4)

which has also generated substantial interest. Although predetermined, valuation predictors,

such as the dividend and earnings price ratios, tend to be both persistent and highly endogenous.

Following Cavanagh et al. (1995), they have been traditionally modelled using the local-to-unity

process [Phillips (1987), Chan and Wei (1987)] and this has more recently been generalized to

include mildly integrated processes [Phillips and Magdalinos (2007), Phillips and Lee (2012)].

The long horizon, persistence, and endogeneity combine to create a nonstandard inference prob-

lem. They have thus generated an increasing interest in financial econometrics, including the

development of new long-horizon tests [Valkanov (2003), Liu and Maynard (2007), Hjalmarsson

(2012), Phillips and Lee (2013)].

Although his interest in this particular problem appears fairly recent, it seems fair to say

that Professor Peter C.B. Phillips has made at least three very important contributions to
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this literature. The first contribution is an indirect contribution. In fact, the long-horizon

regression provides one of many nice examples of the useful insights that can be gained from

the nonstationary asymptotics developed in very large part by Professor Phillips. The empirical

results from these regressions appear remarkably strong and are of clear importance to economics

and finance. At the same time, early simulation studies detect substantial size distortion [Kim

and Nelson (1993), Goetzmann and Jorion (1993)]. Allowing the horizon to increase with k and

modelling the predictor as a near unit root, Valkanov (2003) uses the tools of (near) nonstationary

asymptotics to provide a clear explanation for the size distortion observed in earlier studies. In his

framework, the regressor xt on the right hand side of (2) is near integrated, while the dependent

variable (1) is partially summed since k grows with the sample size, T . Consequently, under

the null hypothesis in (3), the asymptotics resemble in certain respects the spurious regression

asymptotics of Phillips (1986), helping to explain both the size distortion and large t and R-

squared statistics in empirical applications.

Further insights are provided by Hjalmarsson (2012), who shows that when the regression

coefficient from the long-horizon regression is scaled by k it shares the same second order en-

dogeneity bias as the short-horizon regression estimator of β1 in (4). Often referred to as the

Stambaugh (1999) bias, following Cavanagh et al. (1995) this bias is perhaps best understood by

viewing the large sample behavior of the predictive regression in (4) as a special case of cointe-

grating regression asymptotics [Park and Phillips (1988), Park and Phillips (1989), Phillips and

Hansen (1990), Phillips (1991), inter alia], generalized to near unit roots [Phillips (1987), Phillips

(1988), Chan and Wei (1987)]. Thus, the underlying theoretical frameworks developed earlier

by Professor Phillips have been employed to provide a great deal of insight into this important

empirical application.

More recently, Professor Phillips has made two important direct contributions to this liter-

ature. One of the challenges in predictive regression is that, if the predictor is modelled as a

near unit root process, the asymptotic distribution of the test statistic typically depends on the

local-to-unity parameter which cannot be estimated. Until recently, many of the econometric

methods that have been designed to provide inference in predictive regression, including long-

horizon regressions, rely on a Bonferroni bound employing a first stage confidence interval for the

local-to-unity parameter based on the inversion of a unit root test as in Stock (1991). Phillips

(2014) has recently uncovered serious concerns with this approach, showing that the Stock (1991)

confidence interval for the local-to-unity parameter has zero asymptotic coverage when the data

generating process is stationary. This can lead to the invalidity of the resulting Bonferroni based

tests when the true process is mildly integrated or stationary.

In a new major breakthrough, Phillips and Magdalinos (2007) generalize the local-to-unity

model to allow for mildly integrated processes and Magdalinos and Phillips (2009) use this new

theory to propose an alternative solution to the predictive regression known as the IVX method,
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which uses a mildly filtered version of the predictor as an instrument. Their solution altogether

eliminates the endogeneity bias and dependence on an unknown local-to-unity parameter with-

out reliance on Bonferroni methods. It continues to work for stationary and mildly integrated

regressors and is easily extended to multivariate settings.1 Phillips and Lee (2013) have re-

cently proposed a long-horizon version of the IVX method, using a rearranged version of the

long-horizon specification suggested in Jegadeesh (1991).

While the econometric literature discussed above is primarily concerned with understanding

or eliminating the size distortion in long-horizon predictive regression, in this paper we are

interested in the power of long-horizon specifications relative to their short run counterparts

in (4). This has been a controversial question, with the presumed power advantages of long-

horizon regressions both strongly criticized in Boudoukh et al. (2008)[“The Myth of Long-Horizon

Predictability”], and valiantly defended by Cochrane (2008).

There seems to be an unstated assumption in much of the early empirical literature that

predictive regressions are more powerful at longer horizons, perhaps due to economic intuition or

simply as a result of the stronger empirical results reported at longer horizons, see e.g. Campbell

et al. (1997, Chapter 7). This proposition is stated more directly in Campbell (2001). Several

works provide support for this conjecture [Campbell (2001), Kilian and Taylor (2003), Wohar

and Rapach (2005), Mark and Sul (2006), Cochrane (2008)], while others question the power

advantage of longer horizons [Ang and Bekaert (2007), Boudoukh et al. (2008), Hjalmarsson

(2008), Hjalmarsson (2012)].

With a few exceptions, the power properties of long-horizon regressions have mainly been ex-

amined assuming that the true model for returns is given by a short-horizon linear model similar

to (4) [Campbell (2001), Valkanov (2003), Mark and Sul (2006), Cochrane (2008), Hjalmarsson

(2008), Hjalmarsson (2012)]. In this case, as both Campbell (2001) and Hjalmarsson (2012)

remark, the short-horizon regression in (4) is a correctly specified model. This may lead one to

question the advantage of (2), relative to the correctly specified regression in (4). Nonetheless, as

Campbell (2001), Mark and Sul (2006), and Cochrane (2008) all astutely note, the short-horizon

regression loses power in the realistic case in which the valuation predictors are both highly per-

sistent and contemporaneously correlated with the residual. They argue that the long-horizon

regression offers power improvements in this case.

In fact, this combination of near unit root regressor with contemporaneous endogeneity, gives

rise to second order biases in (4), resulting in both size distortion and power loss [Phillips and

Hansen (1990), Phillips (1991), Campbell and Yogo (2006)]. However, this arguably reflects

only an inefficient use of the information in (4) by OLS based tests that are sub-optimal in the

combined presence of endogeneity and (near) nonstationarity. Since more efficient short run

1It also solves the much more general problem of cointegration with near integrated regressors, see Elliott

(1998).
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estimators and more powerful short run tests are now available [Jansson and Moreira (2006),

Campbell and Yogo (2006), Magdalinos and Phillips (2009), inter alia] one can still argue that

there is no inherent power advantage to the long-horizon specification when the true model is the

linear short-horizon predictive regression. In our simulated power comparisons we do find some

small size-adjusted power improvements using OLS based tests when the true model is linear,

but these improvements disappear when more powerful tests are used. Hjalmarsson (2012) also

provides some results to support this contention.

In our view, any inherent advantage to the long-horizon specification could only arise under

nonlinear alternatives to (4). In this case, neither (4) nor (2) is correctly specified, so that

the long run specification in (2) may plausibly provide a better approximation to the true, but

unknown, nonlinear alternative. Kilian (1999) similarly argues that “the observed pattern of

p-values is inconsistent with a linear model”. Yet, we are aware of relatively little literature

which investigates the power of long-horizon specifications when the data generating process

is nonlinear. Kilian and Taylor (2003) and Wohar and Rapach (2005) simulate power using a

nonlinear ESTAR model for the predictor finding power advantages at longer horizons. On the

other hand, Ang and Bekaert (2007) simulate power in a nonlinear present value model, but find

long-horizon regressions to be less powerful. Marmer (2008) shows that predictability is present

only in the short run in the case when the predictive component of returns is a general integral

transformation of a nonstationary predictor.2

We compare the power of long and short-horizon predictive tests in the case when the true

model is characterized by regime switching between bull and bear markets. We assume that

the econometrician does not know the true model and tests predictability using standard linear

predictive models without regime shifting in both the short and long-horizon specifications.

Since neither linear regression is correctly specified, it is no longer obvious that a powerful

short-horizon test should outperform a long-horizon test. In fact, since the states are themselves

persistent, with a probability of switching between states that depends on the predictor, it

seems a priori plausible that the long-horizon regressions might outperform the short-horizon

regressions without the Markov-switching component.

3 Regime Switching Predictive Regressive Models

We consider the following regime switching model

rt+1 = β0(st) + β1(st)xt + σ1(st)εt+1, (5)

2Kasparis et al. (2012) and Cai and Gao (2013) find evidence of nonlinear predictive power in the dividend

yield for stock returns, while the results in Juhl (2011) are suggestive, but insignificant. Gonzalo and Pitarakis

(2012) find evidence of structural breaks in the predictive regression relationship. However, none of these papers

considers the implications for long-horizon predictive tests.
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where the state st ∈ 1 . . . N is a first order Markov process with transition probabilities

pij = Prob (st = j|st−1 = i) . (6)

When N = 1 and there is just one single state, then the regime switching model specializes to

the standard linear predictive model

rt+1 = β0 + β1xt + σ1εt+1. (7)

In order to allow the predictor to predict transitions between states, as well as returns within

states, we focus our attention on a model with time varying transition probabilities. Following

Ding (2012), we model them as (where Φ is the CDF of N(0, 1)):

pij,t = Πj−1
l=1 (1− qil,t) qij,t (8)

qij,t =

{
Φ(θ0,ij + θ1,ijxt−1) for 1 < j < N − 1

1 for j = N .

This formulation allows us to model the transition probabilities as a function of the predictor,

while still ensuring that these probabilities appropriately sum to one. For example, in the two-

state model N = 2, this simplifies to

pi1,t = qi1,t = Φ(θ0,i1 + θ1,i1xt−1) (9)

pi2,t = 1− pi1,t, (10)

in which xt may help predict transitions between bull and bear states.

To provide an economic interpretation, we follow the literature in referring to the states as

bull and bear states in the two state model and as bull, normal, and bear states in the three

state model. To avoid any ambiguity, we define the bull and bear states, respectively, as the

states with highest and lowest values of the estimated intercept β̂0(st) in (5).

3.1 Persistent, Endogenous Regressors

Although predetermined, common valuation predictors, such as the dividend or earnings price

ratios, are both persistent and endogenous. It is typically difficult to reject unit roots in these

variables. Yet, taken literally, a unit root in these predictors may not seem natural from a finan-

cial modelling perspective. Moreover, time series unit root tests are, by design, not consistent

against near unit root alternatives. Accordingly, the local-to-unity or near unit root models

[Phillips (1987), Phillips (1988), Chan and Wei (1987)] have been increasingly used to model the

predictor. This class of models has been recently generalized by Phillips and Magdalinos (2007)

to include mildly integrated series. Consider, for simplicity, a first order autoregressive process

for the predictor

xt = ρ0 + ρ1xt−1 + vt. (11)
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A very general formulation for ρ1 is provided by Phillips and Lee (2013), who model ρ1 as

ρ1 = 1 + c/T η. (12)

Equation (12) specializes to a unit root process, in the case when c = 0, a near integrated process

when η = 1 and c < 0 and a mildly integrated series when 0 < η < 1.3

In order to realistically capture the endogeneity in the data, we follow the linear predictive re-

gression literature in modelling the innovations as contemporaneously correlated with correlation

δ = corr (εt, vt):

(εt, vt/σ2)
′ ∼ i.i.d.

(
0,

[
1 δ

δ 1

])
. (13)

This error structure is common in both the predictive regression and regime shift literatures. In

the absence of regime shift, it nonetheless has the disadvantage of imposing homoskedasticity.

In our context, we allow for the conditional return variance σ2
1(st) to vary across states. In-

corporating time varying conditional heteroskedasticity within states could further enhance the

realism of the model, although possibly at the cost of complicating its estimation.

4 Data and Variables

Our study is based on 1048 monthly observations of the excess return, including dividends, and

the dividend price ratio on the S&P 500 price index starting in July 1926 and ending in October,

2013. The stock return and dividend data are maintained by Robert Shiller and are combined

with the monthly risk free rate maintained by Kenneth French. The monthly dividends are

linearly interpolated from yearly totals. Defining the level of the S&P 500 price index by Pt,

dividends by Dt, and the risk free rate by it, we define the excess return as

rt = ln

(
Pt +Dt

Pt−1

)
− it. (14)

Following common practice [see for example, Fama and French (1988a) and Chapter 7 of Camp-

bell et al. (1997)], we sum the monthly dividends over the past twelve months to obtain

dpt = ln

(
Dt +Dt−1 + . . . Dt−11

Pt

)
. (15)

Dividends are often summed as in (15) on account of their strong seasonality. Although not

standard practice, this could also be achieved by a yearly average of dividends. It is possible

that smoothing the dividends may also mitigate any bias from the linear interpolation of yearly

dividends.4

3Locally (c > 0, η = 1) and mildly (c > 0, 0 < η < 1) explosive processes are also allowed for in (12).
4Recent research by Ghysels and Miller (2014) uncovers potentially serious bias in the use of interpolated data

in the context of cointegration testing.
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Following (Schaller and Norden 1997, footnote 14, page 14), who estimate a regime switching

predictive model with fixed coefficients, we then standardize dpt to have zero-mean and unit

variance in order to define our predictor as

xt =
(
dpt − d̄pt

)
/σ̂dpt , (16)

where d̄pt and σ̂dpt are the sample mean and standard deviation of dpt respectively. Although

this normalization is not typical in the linear predictive regression literature, we also find that

it leads to a somewhat better fit and more easily interpretable parameters when estimating a

regime switching predictive regression model.

If dpt is (near) nonstationary, it will have an infinite range, tending to take values far from

zero. Without the normalization in (16), this would lead the transition probabilities, defined as an

asymptotically homogeneous function of the predictor in (8),5 to cluster at zero or one depending

on the signs of θ1 and xt. By normalizing the standard error, we avoid this problem. On the

other hand, this normalization would present additional challenges for asymptotic inference in

the regime shift model, since xt is a function of the dividend price ratio process in (15), which

may itself be characterized by a near unit root, in which case the standard deviation in (16)

is increasing in sample size. We leave these developments for future work. In this paper, we

simply employ the parameter estimates of the regime switching model to parameterize the data

generating process used in our simulated power analysis.

5 Empirical Estimates

Before turning to the regime switching regression model, we first estimate a regime switching

model for the mean and variance of the excess return in (14). In this way, we explore the distinct

properties of the returns in the bear, bull, and normal states of the market. This also allows us

to assess the significance of the coefficients and the fit of the regime switching model, without

the additional complications induced by time varying transition probabilities and the inclusion

of a persistent predictive regressor.

Tables 1 and 2 respectively show the estimated coefficients and transition coefficients in the

pure regime switching model without predictors. Table 1 provides the estimates of β0(st) and

σ1(st) for each state st, when restricting β1(st) = 0 in (5). Likewise, Table 2 provides estimates

of the intercepts for the transition probabilities in (8), which are non-time varying in the absence

of a predictor.6 Standard errors are given in parenthesis.

For the purposes of comparison, we include the results for the single state model in column

5See Park and Phillips (1999).
6Omitting the predictor restricts θ1,ij = 0 in (8) for all i, j.
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2 of Table 1.7 This shows a mean monthly (log) excess return for the S&P500 of 0.0051, or

approximately six percent on an annual basis, over the entire sample period and a return variance

of 0.0014. Columns 3 and 4 show the estimated bear and bull state values for the two state

model. The mean return in the bull state is more than substantially higher than in the bear

state, whereas the variance of the bear state is approximately nine times as high as that of the

bull state, reflecting the greater turbulence that occurs during market downturns. In both cases,

the difference between the estimates in the two states is several times bigger than the larger of

the two standard errors, lending statistical support to the observation that the market behaves

differently during bear and bull states. In the three state model (columns 5-7), the bull and

bear states capture the more substantial rallies and downturns, with calmer periods absorbed by

the normal state. Consequently, the three state models shows a much larger differential between

average returns in the bull and bear markets. The bear market again shows the greatest volatility,

while the bull state has the lowest return variance.

Columns 2-3 of Table 2 show the the estimated intercepts in the model for the transition

probabilities between bear and bull states in the two state model. Both states are quite persistent,

but the probability of switching from bear to bull state in any period is substantially higher than

the probability of switching from bull to bear. This reflects the greater duration of bull states.

Columns 4-6 of the same table provide the coefficients of the transition probabilities for the

three state model. All three states are again persistent, but the normal and bull states are more

persistent than the bear state. In all cases, the standard errors suggest that the estimates are

reasonably precise.

The last row of Table 1 shows the Hannan and Quinn (1979) information criteria (H-Q IC)

for each model, with lower, more negative values denoting a better penalized fit.8 Both regime

switching models are strongly favored relative to the single state model and the two state model

shows a slight improvement over the three state model.9

We now include the dividend price ratio as a state-dependent predictor for the returns them-

selves in (5).10 This arguably allows for a more realistic specification of the predictive regression

model, which incorporates the difference in expected return and variance across the bear and bull

states. It also allows for the predictive power of the dividend price ratio to vary across states.

7We are grateful to Marcelo Perlin for use of his MATLAB code for the estimation of the fixed transition

probability Markov Switching Models. His code is available online and documented in Perlin (2012).
8Guidolin and Hyde (2010) similarly employ the H-Q IC to aid the selection of the number of states in a regime

switching model.
9In additional results, omitted for brevity, a marginally better H-Q IC value was obtained in the four state,

but at the cost of large standard errors, resulting in the poor identification of a number of the model coefficients.
10We are grateful to Zhuangxin Ding for use of his MATLAB code. As documented in Ding (2012), this

code extends Perlin (2012)’s original code in order to allow for time varying transition probabilities. In order to

verify that global maximums were obtained, we compared estimation results and likelihood values across several

perturbations to our initial starting values for the optimizations.
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In addition, we allow the dividend price ratio to help predict the transition probability between

bear and bull states via its inclusion in the model for the time-varying transition probabilities

in (8). To the extent that valuation variables may predict transitions between bull and bear

markets, this may have stronger practical implications than return predictions within a given

state.

Drawing inference in the regime shift predictive regression model is presumably complicated

by a similar second order bias as in the linear predictive regression model. Deriving techniques

that avoid second order bias and size distortion in this highly nonlinear model is a worthy goal

for future research, but lies beyond both the scope and needs of our current paper, in which we

require only consistent model estimates in order to anchor our simulated power comparisons in

Section 7. In a related context, Gonzalo and Pitarakis (2012) develop an IVX based predictive

regression test with structural breaks. Although their model differs in a number of important

respects from that in (5) and (8), their finding offers general support for the existence of breaks

or regime changes in predictive regression.

Table 3 shows the parameters estimates and standard errors in parenthesis in the regime

switching predictive regression model (5) with time varying transition probabilities given by (8).

The results for the two state model are shown in columns 3-4. As in Table 1, the bull state has

a higher mean return, whereas the bear state has a higher standard deviation. The predictive

power of the dividend yield (if significant) is also about seven times as large in the bear state as

in the bull state. Gonzalo and Pitarakis (2012) recently come to a similar conclusion in a model

of predictive regression with structural breaks. Interestingly, in the three state model shown in

columns 5-7, it is the bear state in which the dividend yield is most strongly predictive, with the

coefficient on the dividend price ratio positive and estimated with a large standard error in the

bear state.

Table 4 shows the estimates and standard errors for the parameters in (8) governing the

transition probabilities. Here, we focus our comments on the two state model in columns 2-3,

whose parameters are the most readily interpretable, as seen from (9). The first panel provides

the estimates of the intercepts (the θo,ij in 8). The diagonal element of the intercepts (θ̂o,11)

is large and positive, while the off-diagonal element (θ̂o,21) is negative. This indicates that the

states are again persistent, with a relatively small probability of switching in any single period.

The second panel in Table 4 shows the slope coefficients (the θ1,ij in 8). The positive estimate

of θ̂1,11 in the second column suggests that the conditional probability of remaining in a bull

market is highest when the dividend price ratio is large. Put another way, a switch from bull to

bear market, possibly via a market crash, appears more likely when the stocks are highly valued

relative to dividends (low dividend price ratio). The negative estimate of θ̂1,21 suggests that the

transition from bear to bull market is also more likely when stocks are relatively higher valued.

This may reflect the observation that bull markets sometimes end in sudden crashes, whereas
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the transition from bear to bull often follows a more gradual market rally, which allows the stock

prices to partially recover prior to the onset of the next bull market.

The last row of Table 3 shows the Hannan and Quinn (1979) information criteria (H-Q IC)

for each model. The inclusion of the dividend price ratio leads to a lower H-Q IC in all models,

although it is unclear if the difference is significant. Among the models with the dividend price

ratio included in Table 3, the two state model has the lowest H-Q IC. Its value is substantially

lower than the single state model or linear predictive regression. The two state model also has a

somewhat better fit than the three state model. We therefore employ the two state model with

the dividend price ratio as our baseline model in which to anchor our simulations in Section 7.

Figure 1 shows the fitted probabilities of a bear state in this model, with the calendar date shown

on the horizontal axis and the major market downturns listed in the figure caption. Although

during a majority of the time the probability of the bear state is low, the model appears to identify

nearly all of the major historical downturns and/or market crashes as bear states. Indeed, it

would appear to do quite a good job in capturing the major periods that most market observers

would classify as bear states.

6 Long-Horizon Regression Specifications and Tests

In the simulated power exercise that follows, the empirical researcher is not assumed to know

the true model. Instead it is assumed that either a short or long-horizon linear predictive

regression is employed as an empirical specification. In particular, we consider two long-horizon

specifications from the literature, both of which share the same null hypothesis, but which differ

in the formulation of their alternative. Both involve the choice of a horizon length (k), which

in some asymptotic analysis is modelled as a function of the sample size T [Valkanov (2003),

Phillips and Lee (2013)] and in others taken to be arbitrarily large, but fixed, as in Hjalmarsson

(2011). A fairly general formulation covering both of these possibilities is given by

k = λT v for 0 ≤ v ≤ 1, λ > 0, and λI(v ̸= 0) ≤ 1 (17)

where I() denotes the indicator function. In (17), v = 0 corresponds to a fixed horizon as in

Hjalmarsson (2011), (v = 1, 0 < λ < 1) corresponds to a horizon that grows at a fixed fraction

of sample size as in Valkanov (2003), and (λ = 1, 0 < v < 1) allows a horizon that grows more

slowly than T , as in Phillips and Lee (2013).

6.1 Standard Long-Horizon Specification

One of the most common versions of the long-horizon specification is given by (2), in which rkt+k

is the long-horizon (k period) return in (1). The null hypothesis of non-predictability is tested
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via a test of the parameter restriction in (3) under the maintained hypothesis11 that

Etε
k
1,t+k = 0. (18)

6.2 Rearranged Long-Horizon Regression

We also consider a rearrangement of this regression originally proposed by Cochrane (1991) and

Jegadeesh (1991) and given by

rt+k = β∗
0(k) + β∗

1(k)x
k
t + ε∗,kt+k (19)

in which a one period return is regressed on the long-horizon (or partially summed) regressor

xkt =
k∑

j=1

xt+k−j . (20)

The null hypothesis of non-predictability is then tested using the coefficient restriction

H0 : β
∗
1(k) = 0 (21)

under the maintained assumption that

Etε
∗,k
t+1 = 0. (22)

Liu and Maynard (2007) use this same rearranged regression to propose an exact nonparametric

test of long-horizon predictability based on a sign test. Phillips and Lee (2013) employ this

specification to provide a long-horizon version of the IVX solution to the predictive regression

problem.

Since xkt is realized at time t + k − 1, the rearranged regression in (19) can also be viewed

as a short-horizon regression that uses a long history of the predictor xt as its regressor.

Note, however, that the temporal distance between the one period component returns and

one period component predictors in the two regressions, (2) and (19), are the same. That

is, (rt+k, x
k
t ) = (rt+k, xt+k−1 + xt+k−2 + . . . + xt) and (rkt+k, xt) = (rt+1 + rt+2 + . . . rt+k, xt)

both involve spacings of 1, 2, . . . and k periods between rt and xt. Therefore, when (rt, xt)

are jointly covariance stationary the rearrangement in (19) can be motivated by expressing

β1(k) = cov(rkt+k, xt) /var(xt) and β∗
1(k) = cov(rt+k, x

k
t )
/
var(xkt ) and noting that the covari-

ances in the numerator are equivalent. In other words, the null hypotheses that β1(k) = 0 and

that β∗
1(k) = 0 impose the same orthogonality restriction, viz. cov(rkt+k, xt) = cov(rt+k, x

k
t ) = 0.

More generally, even when xt is not stationary, under the maintained hypothesis in (22), Liu

11The maintained hypothesis in (18) ensures the rt+k is unpredictable under the null in (3). We refer to it as a

maintained hypothesis, since it is not usually explicitly tested in this literature.
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and Maynard (2007) and Phillips and Lee (2013) show that the null hypothesis (21) of the re-

arranged specification implies the original null hypothesis in (3), together with the maintained

assumption (18).12Therefore, the two formulations test the same null hypothesis, but may have

different power implications under the alternative hypothesis.

6.3 Long-Horizon Tests for the Standard Specification

We are not currently aware of a valid existing method of testing (3) using the traditional long-

horizon formulation in (2) under the general specifications (12) and (17) for the persistence

of predictor, xt and the choice of the horizon k. Nevertheless, this specification is of particular

interest since it is perhaps the mostly widely used in the empirical literature. Within the confines

of the local-to-unity model, which imposes η = 1 in (12), Valkanov (2003) and Hjalmarsson

(2011) provide long-horizon predictive tests based on (2) employing local-to-unity asymptotics

and Bonferroni bounds procedures.

Valkanov (2003) provides the asymptotic distribution of the standard t-test for testing the

restriction (3) in (2) under a local-to-unity asymptotic specification for xt (12, with η = 1) and

a horizon that grows at a fixed fraction of the sample size (v = 1 in 17). For a given value of

the local to unity parameter c, this provides for a correct critical value for the standard test

statistic, scaled by the square-root of the sample size. However, since the critical value depends

on c, which cannot be consistently estimated in a time series context, a Bonferroni procedure

based on a first stage confidence interval is employed. This approach is therefore similar in spirit

to the short-horizon predictive test of Cavanagh et al. (1995). Both employ a standard test

statistic (possibly after rescaling) with corrected critical values.

Hjalmarsson (2011) instead corrects the test statistic by providing a second order endogeneity

correction to the estimator of β1(k) on which the test is based. This is accomplished via an

augmented regression of the type first introduced by Phillips (1991)13

rkt+k = β0(k) + β1(k)xt + ϕ(k)∆cx
k
t + ε+,k

1,t+k where (23)

∆cx
k
t =

k∑
j=1

(
xt−k+j − (1 +

c

T
)xt−k+j−1

)
=

k∑
j=1

vt−k+j .

The inclusion of the term ∆cx
k
t in (23)14 removes the endogeneity bias in the estimate of β1(k)

in (23), denoted by β̂+
1 (k). Although the distribution of β̂+

1 (k) still depends on the horizon

length k, it does so in a simple way. As is well explained in Boudoukh et al. (2008), under the

12As explained in Liu and Maynard (2007), (21,22) imply Et+j−1rt+j = β∗
0 (k) and therefore Etrt+k = kβ0(k),

which is equivalent to (3,18). See also Phillips and Lee (2013) for an insightful explanation of the relationship

between the two long-horizon specifications.
13In (23) the estimator β+

1 (k) is equivalent to a local-to-unity version of the fully modified Phillips and Hansen

(1990) estimator specialized to the context of the long-horizon predictive regression.
14Due to the inclusion of this term, we include a plus in the superscript of ε+,k

1,t+k to distinguish it from εk1,t+k.
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null hypothesis in (3), estimates of β1(k) are approximately proportional to k. Consequently,

Hjalmarsson (2011) shows that when rescaled by the horizon length, β̂+
1 (k)/k has a mixed normal

null limiting distribution whose variance no longer depends on k. Likewise, letting t+k (c) denote

the standard t-statistic associated with the test of H0 : β1(k) = 0 in (23), he shows that

t+k (c)/
√
k →d N(0, 1) (24)

under the null hypothesis, justifying the use of standard critical values.

In the simulations below, we will refer to t+k (c)/
√
k as the ‘oracle’ version of Hjalmarsson

(2011)’s test. It is infeasible in practice, because the augmentation ∆cx
k
t depends on the unknown

value of c. In practice, a Bonferroni bound based on a first-stage confidence interval for c is

therefore required in order to draw inference. Denoting this confidence interval, with confidence

level 1− α1 by
(
cα1

, c̄α1

)
a feasible, yet conservative version of the test rejects if

t+k,min/
√
k = inf

c∈
(
cα1

,c̄α1

) t+k (c)/√k > zα2 , (25)

where zα2 is the standard normal critical value associated with the significance level α2, such

that α1+α2 = α, where α is the desired significance level of the test. In other words, a rejection

occurs for the Bonferroni bounds test only if it occurs for every possible value of c in the first

stage confidence interval. The requirement that α1 + α2 = α can lead to overly conservative

tests and in practice adjustments to α1 are typically recommended in order to keep the test from

becoming too conservative [Cavanagh et al. (1995), Campbell and Yogo (2006)]. In implementing

this test, we select α1 according to the recommendations in Hjalmarsson (2011), to which we refer

the reader for further details. In the linear predictive regression context, Hjalmarsson (2012)

finds that his test has better power properties than the earlier test by Valkanov (2003). Thus,

we employ this version of the test of the restriction (3) in (2).

In an important recent paper, Phillips (2014) has shown that the Stock (1991) confidence

interval for the local-to-unity parameter c has zero asymptotic coverage when the data generating

process is stationary. This can lead to either invalidity or excessive conservatism of Bonferroni

procedures based on a first stage confidence interval for c, when the true process is mildly

integrated (η < 1 in (12)) or stationary. Although Hjalmarsson (2011) employs an alternative

first stage bound, based on Chen and Deo (2009), his simulations do indicate that his test

becomes increasingly conservative for large negative values of c, particularly at long horizons.

We address this in several respects. First, for all of our simulations, we compare the power

of the test across the oracle version (24), in addition to the Bonferroni version in (25). Although

the oracle version of the test is not feasible, this allows us to assess whether any of the power

comparisons across horizons is driven primarily by the implementation of the Bonferroni bound.

More importantly, we include power comparisons for the new IVX based long-horizon test of

Phillips and Lee (2013). This is the first regression based long-horizon test that we are aware
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of which does not require Bonferroni bounds. Since it is based not on (2), but rather on the

rearranged regression (19), we discuss its implementation in the next section. Currently, we are

not aware of any IVX test based on the original long-horizon specification in (2). Given the

emphasis in the empirical literature on the specification in (2), we feel that it is important to

include feasible tests based on this specification in our power comparisons.

6.4 Long-Horizon IVX Test for the Rearranged Specification

Phillips and Lee (2013) develop an IVX estimator and predictive test for use in the long-horizon

context, employing the rearranged regression in (19). They refer to their test as the long-horizon

IVX (LHIVX) test. As mentioned above, unlike other long-horizon regression based tests, the

LHIVX test does not rely on Bonferroni bounds or first stage confidence intervals for c. Instead it

provides a single test statistic with a standard normal limit distribution yielding simple inference.

Consequently, its validity is not restricted to the local-to-unity model, and it is easily applied

in multivariate contexts. Indeed, Phillips and Lee (2013) allow for a very general model of the

persistence in xt as in (12).

IVX based tests employ an instrument that is a mildly filtered version of the original regressor

xt. The instrument is filtered enough so that the endogeneity term is not present in the limit

distribution of the instrumental variable estimator, but not so much that it unduly reduces the

instrument strength. An important theoretical foundation for its development is Phillips and

Magdalinos (2007)’s generalization of the local-to-unity framework to allow for mildly integrated

variables. The instrument is designed to be a mildly integrated regressor (η < 1 in (12)). This

intermediate persistence of the instrument is crucial to the success of the IVX approach, since an

I(1) or local-to-unity based instrument would still be subject to an endogeneity bias that depends

on c, whereas an I(0) instrument would only be weakly correlated with an I(1) regressor.

We will focus on the case of a single regressor, since this is the case we consider in Section

7. In the short-horizon case, when k = 1 in (19), their IVX instrument is defined as the mildly

filtered series

z̃t =

T∑
j=1

(
1 + cz/T

δz
)(t−j)

∆xj (26)

where cz < 0 and 0 < δz < 1 are specified by the researcher. In the context of the long-horizon

regression when k > 1 in (19), Phillips and Lee (2013) propose the long-horizon instrument

z̃kt =
k∑

j=1

z̃t+j−1, (27)

which is partially summed in the same way as the regressor in (20). Under an additional rate

condition that guides the choice of cz and δz, Phillips and Lee (2013) show that their estimator

is asymptotically mixed normal, resulting in standard normal or Chi-squared inference over the
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wide range of persistence levels for xt in (12), including mildly integrated, nearly integrated,

integrated, mildly explosive and locally explosive models.

7 Power of Long-Horizon Regression in Linear and Regime Switch-

ing Predictive Regression Models

We provide a simulation based comparison of the power of short and long-horizon linear regression

predictive tests when the true model is given by the regime switching model in (5) with persistent

endogenous regressors as in (11,12,13). As a point of comparison, we also provide results when

the data is generated from the short-horizon linear predictive regression (7).

The regime switching model has a good number of parameters associated with it. In order

to ensure that we simulate from a realistic parameterization of the model, we use the estimates

in Tables 3 to set the default values of the parameters in (5). Similarly, we use the estimates

in Table 4 to simulate the model for the time varying transition probabilities in (8). We focus

on the two regime (N = 2) model, which appears to have the best fit, but also compare it to

the linear predictive regression (N = 1).15 In the model for xt, the parameters in (12) are not

estimable and there is a genuine uncertainty regarding the persistence of valuation predictors

such as the dividend price ratio. We consider two specifications of (12): (c = −2.5, η = 1) and

(c = −20, η = 1). The first represents a case in which the series is almost as persistent as a unit

root, whereas the second represents the case of a much less persistent series. The innovations for

return and predictor series are drawn from (13) using a multivariate normal distribution with

correlation δ = −0.95, which is typical of valuation predictors, such as the dividend price ratio.16

We consider T = 200 as a fairly small sample and T = 1048, the sample size in our data set

described in Section 4. All simulation results are based on two thousand replications.

We restrict certain parameters under the null hypothesis. In the linear predictive regression

it is typical to test the null hypothesis that β1 = 0 in (7) under the maintained assumption

that Etεt+1 = 0, which is equivalent to the non-predictability condition Etrt+1 = β0.
17 We

enforce the same non-predictability condition when imposing the null hypothesis in the regime

switching model. This implies both zero slope coefficients in all states and intercepts that do

not vary across states, i.e.

H0 :

(
β0(st)

β1(st)

)
=

(
β0,0

0

)
for all states st. (28)

15We have also re-run many of our results using a three regime version of our model, based on earlier estimates,

obtaining qualitatively similar results.
16We estimate δ = −0.9424 in the linear predictive regression using our data.
17Since, following much of the literature, we do not impose β0 = 0, this could be more precisely referred to as

the null hypothesis of non-time-varying-predictability. The non-zero intercept allows for a non-time varying risk

premium and accommodates the positive average returns that have been recorded over long historical periods.

17



For β0,0, the null value of β0, we take a weighted average of our empirical estimates of β0(st)

across the N states, where the weights are given by the unconditional state probabilities implied

by the transition probabilities in (8) evaluated at the mean value of the predictor x̄.

In order to provide a power curve, rather than simply power at a single point in the alterna-

tive, we allow the parameters that are restricted under the null hypothesis to drift back towards

their default (estimated) values under the alternative hypothesis, i.e.

HA :

(
β0(st)

β1(st)

)
=

(
β0,0

0

)
+

γ

T (1+v2)/2

(
β∗
0(st)− β0,0

β∗
1(st)

)
, (29)

where β∗
0(st) and β∗

1(st) are the default values of the parameters taken from the empirical es-

timates in each state shown in Table 4. The value of γ determines the distance from the null

hypothesis and is allowed to vary across the horizontal axis. The value of v2 is specified below

for each test.

Although the data is generated from the regime switching predictive regression model, we do

not assume that the empirical researcher knows that this is the true model. Rather, our interest

lies in comparing the power of the most common short and long-horizon linear predictive regres-

sions when the data is generated by a plausible nonlinear model, such as the regime switching

predictive regression model. We compare the power of the long and short-horizon regressions

using the two well known long-horizon specifications, the standard long-horizon regression (2)

and the rearranged long-horizon regression (19), discussed in Section 6. We consider only the

empirically relevant positive, one-sided alternatives HA : β1(k) > 0 or HA : β∗
1(k) > 0 respec-

tively to the null restrictions (3) and (21). To keep our comparisons easily viewable, in each

figure we compare the power curve for the short-horizon specification k = 1 to two long-horizon

specifications, where k is chosen according to (17). The choice of λ and v are discussed separately

below for each test.

In the case of the standard long-horizon regression (2), we simulate power comparisons across

three different tests:

• Although the OLS based test is invalid in our framework and highly sized distorted, it

has nonetheless been influential in the literature. It is therefore of some interest to know

whether longer horizon versions of the test lead to any power improvements or whether

they merely aggravate size distortion. Thus we compare size-adjusted power of the OLS

based test between long and short-horizon tests.

• As an alternative test that has conservative size within the confines of the local-to-model,

we consider the feasible, Bonferroni version of the rescaled, endogeneity corrected tests

of Hjalmarsson (2011) using the test statistic t+k,min/
√
k in (25). Since this test is not
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oversized, we compare power rather than size-adjusted power in this case.18

• Since Phillips (2014) has pointed out some important shortcomings with many of the

existing Bonferroni based approaches to predictive testing and Hjalmarsson (2011) reports

that when c is large negative, the Bonferroni version of his test becomes more conservative

at larger horizons, we also provide results for the oracle version of the same test in (24).

Although the oracle version is of course infeasible, it helps us to ensure that none of the

comparison are solely driven by the influence of the Bonferroni bounds in the feasible

version of the test.

In the case of the rearranged regression, we compare two additional tests.

• We compare size-adjusted power in an OLS based test of the rearranged regression.

• More interestingly, we also compare the power (without size-adjustment) of the IVX and

LHIVX tests of Phillips and Lee (2013) discussed in section 6.

Since this results in a great many power curves, we include only a few of the curves to illustrate

our main findings below. Additional results, that generally confirm the main conclusions arrived

at below, are available from the authors upon request. These include results using both the

smaller sample size of T = 200 and the lower persistence parameter of c = −20.

7.1 Power Comparisons Based on the Standard Long-Horizon Specification

We first compare the size-adjusted power of short and long-horizon tests based on (2) for the OLS

based test. We also compare power for both the Bonferroni and oracle versions of Hjalmarsson

(2011)’s test discussed in Section 6.3. Since these tests have non-trivial power against Op

(
T−1

)
alternatives, we set v2 = 1 in (29). Similarly, we set v = 1 in (17) when selecting k and take

λ = 0.05 and 0.010, resulting in values of k = 10 and k = 20 when T = 200 and k = 52 and

k = 104 when T = 1048. In all cases we compare to k = 1.

7.1.1 True Model is a Linear Predictive Regression

Figure 2 (using T = 1048) provides the size adjusted power curves of standard t test when

k = 1 and k = 52 and k = 105 when the true model is the linear predictive model in (7). The

three curves are generally quite similar. A small power advantage to the longer horizon tests is

detectable towards the middle of the power curve (50 < γ < 150). The OLS based test does

not make efficient use of the endogeneity between the regression error and regressor innovation,

18In principle, it is not clear whether any of the tests we consider here are correctly sized when the residual

variance σ2
1(st) varies across states under the null hypothesis. However, this does not appear to be an important

practical concern in any of our simulations.
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which may explain why there is room for some slight power advantages to the long-horizon

specification. We next turn to the oracle version of Hjalmarsson (2011)’s test in Figure 3, which

makes optimal use of this endogeneity within the confines of the linear predictive model with

local-to-unity predictor. With the use of this more powerful test, the slight advantage of the

long-horizon test disappears. The short-horizon is more powerful throughout the power curve.

The dominance of the short-horizon test remains even after the test is made feasible using its

Bonferroni implementation in Figure 4. This confirms that when the true model is linear and

the short run regression is therefore correctly specified, the long-horizon tests should not be able

to provide power improvements to efficient versions of the short-horizon test.

7.1.2 True Model is a Regime Switching Predictive Regression

We now consider the same comparisons in the regime switching predictive regression model, in

which the regressor can be predictive for both the transition probabilities of switching between

regimes and the return outcomes within regimes. In this case, both the short and long-horizon

models are inherently misspecified and act only as linear approximations to the true nonlinear

model. In principle, there is no reason to argue that the long-horizon model couldn’t provide

an improved approximation and better power than the short-horizon model. Indeed, it would

seem surprising if there were not some nonlinear models for which this is the case. The practical

question that we now address is whether, using simulations based on empirical estimates of the

regime switching model, we obtain power improvements at longer horizons. Put another way, if

the regime switching model were the true model, would we be more likely to detect the resulting

return predictability at longer horizons?

Our results suggest that this is not the case. Long-horizons tests fare no better (and some-

times worse) when the data is generated from nonlinear regime shift models, capturing bear/bull

markets. We find this result even when allowing the regressor to be predictive of the regime shift

itself. The OLS test, shown in Figure 5 (using T = 1048), again shows modest size-adjusted

power advantages at long-horizons close to the null hypothesis, whereas the short-horizon test

has the best power for distant alternatives. However, the short-horizon test continues to show the

best power over the entire alternative in both the oracle and Bonferroni versions of Hjalmarsson

(2011)’s test, shown in Figures 6 and 7. Thus, even in this nonlinear model, the long-horizon

tests do not provide a power advantage over their short-horizon counterparts.

7.2 Power Comparisons Based on Rearranged Long-Horizon Specification

We now compare power across horizons in the rearranged long-horizon empirical specification in

(19), with our primary focus on the IVX and LHIVX estimators discussed in Section 6. For the

short-horizon IVX, k = 1. For the LHIVX, Phillips and Lee (2013) consider return horizons that
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grow more slowly than sample size (v < 1 in (17)). We fix λ = 1 and consider both v = 0.80

and v = 0.90, resulting in values of k = 69 and k = 117 when T = 200 and k = 260 and k = 522

when T = 1048. Phillips and Lee (2013) show that their test is divergent against alternatives

of the rate T−1/2k−1/2 = T−(1+v)/2. Therefore, we set v = 0.80 in the specification of the

local alternative in (29), where γ again varies across the horizontal axis. Following both the

recommendations of Phillips and Lee (2012) and Phillips and Lee (2013) we set cz = −5.0. The

selection of δz in (26) requires slightly more attention. For the short-horizon IVX, Phillips and

Lee (2012) recommend a value of δz between 0.75 and 0.95. For the long-horizon regression, rate

restrictions require δz < v in (17) and Phillips and Lee (2013) suggest δz = v − 0.05. Therefore,

we employ δz = 0.75 when v = 0.80 and δz = 0.85 when v = 0.90. We compare these to two

versions of the short-horizon IVX: k = 1 with δz = 0.75 and k = 1 with δz = 0.85. With

these choices, we use recommended values of δz in all cases and we can compare the short and

long-horizon regressions holding δz fixed.

The LHIVX is a newly introduced test and we are not aware of any finite sample power

results for the test even in the linear model, so it is interesting to compare its performance

across horizons and choices of δz. Figure 8 provides this comparison in the linear predictive

model for T = 1048 and c = −2.5. Of the two long-horizon tests, it is interesting to note that

using v = 0.80 (k = 261) with δz = 0.75 has both better size and power than the test employing

v = 0.90 (k = 525). This result was not expected, but it may be that v = 0.90 comes too close

to the restriction that v < 1. In fact, the LHIVX test with v = 0.80 and δz = 0.75 has very

good local power, dominating the short-horizon IVX test with the same value of δz for γ < 200.

However, when using a larger value of δz = 0.85, the short-horizon test does as well as the

long-horizon test near the null hypothesis and provides better power further into the alternative.

These results are interesting in that they highlight the important interplay between the choice of

δz and the horizon. Yet, overall they still suggest that with a good choice of δz the short-horizon

IVX can provide as much or more power than its long-horizon counterpart.

In Figure 9, we next investigate the power of the LHIVX test when the data is generated

by the regime switching model. The general conclusions do not change. The LHIVX test with

v = 0.80 (k = 250) and the short-horizon IVX test with δz = 0.85 are equally good and improve

on the other two tests near the null hypothesis, while the short-horizon test with δz = 0.85

appears to be the best further along the power curve.

Overall, when the short-horizon test is efficient or based on a good selection of δz, our

simulations show little evidence of power improvements from longer horizon tests in either the

linear predictive regression or the regime switching predictive regression model.
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8 Conclusion

There has been much debate in the literature regarding the presumed power advantages of long-

horizon regressions. With a few notable exceptions, most of this debate has taken place within

the context of a linear predictive model as the true data generating process. In this case, long-

horizon regression tests may have power advantages over short-horizon tests that do not fully

exploit the information in the model, especially the contemporaneous endogeneity between the

regressor innovation and the regression residual. On the other hand, it seems unlikely that they

would have advantages over more efficient short-horizon tests when a linear short-horizon model

is the true model.

The class of nonlinear models is so large that it would not be surprising if one could find

nonlinear models which are better approximated by long-horizon than short-horizon regression

models. However, this would only seem to provide practical support for the long-horizon ap-

proach if both the nonlinear model that supports it and its parameter values are realistic. This

argues in favor of a comparison based on simulations from an estimated nonlinear model that

has already received support in the empirical literature.

In this paper we compare the power of short and long-horizon tests in both the linear model

and an empirically plausible nonlinear model, involving regime switching predictive regression

with time varying transition probabilities that are also a function of the predictor. Previous

empirical literature has shown this model to be successful in capturing the bull and bear states

long observed by market participants. We use our empirical estimates to anchor our simulations

in a realistic manner.

We then compare the power of short and long-horizon tests when the true model is given by

the estimated regime switching predictive regression model. As a point of reference, we provide

similar comparisons when the data is generated by a linear regression model. We make these

comparisons using two different versions of the long-horizon regressions: the standard long-

horizon regression in (2), which has a long-horizon dependent variable and the rearranged long-

horizon regression in (19), which uses a long-horizon predictor. Accordingly, we also consider

two different recent long-horizon tests, the Hjalmarsson (2011) test and the Phillips and Lee

(2013) long-horizon IVX (LHIVX) test. In addition, we compare size adjusted power for the

influential, though size-distorted, OLS based tests used in much of the earlier empirical work.

We also make comparisons using an infeasible, oracle version of the Hjalmarsson (2011) test.

Taken as a whole, our results are not overly supportive of the long-horizon regressions. In the

case of the standard long-horizon specification, we find that that long-horizon regressions can

provide at best a modest improvement in size-adjusted power using OLS based tests. However,

in more powerful versions of the tests, such as the oracle version of the Hjalmarsson (2011) test,

or even its Bonferroni counterpart, the short-horizon test shows better power in both the linear
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and regime switching predictive tests.

In the context of the rearranged regression, the power of the LHIVX test depends on both

the horizon and the parameter δz, which determines the extent of the mild filtering used in

the creation of the instrument. The theoretical results provide more flexibility in selecting this

parameter at short horizons than in long horizons. For some choices of δz the long-horizon

IVX test can provide more power close to the null hypothesis than its short-horizon counterpart.

However, with a better choice of δz, we find that the short-horizon IVX is generally more powerful

than the LHIVX, even close to the null hypothesis. The advantage to the short-horizon test

increases as we move further from the null hypothesis.

Overall, our results support the contention that the higher power of long-horizon regressions

may simply be a “myth” as argued by Boudoukh et al. (2008). On the other hand, regime

switching models are not the only plausibly nonlinear models that could be considered in making

these comparisons. Contrary to our results, improved power has been found in long-horizon

regressions when using a nonlinear ESTAR model as the data generating process [Kilian and

Taylor (2003), Wohar and Rapach (2005)]. Models incorporating financial bubbles [Evans (1991),

Phillips et al. (2014)] might also support the conjecture of improved power at longer horizons

and this could be an interesting avenue for future research. More general theoretical results on

the relative power of long horizon tests in nonlinear models might be possible in the general

framework of Park and Phillips (1999).
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Table 1: Estimated Model Coefficients in Regime Switching Models without Predictors
Single State Model Two State Model Three State Model

st N/A Bull Bear Bull Normal Bear

β̂0(st) 0.0051 0.0103 -0.0223 0.0105 0.0027 -0.0284
(0.0014) (0.0010) (0.0078) (0.0011) (0.0042) (0.0123)

σ̂2
1(st) 0.0021 0.0008 0.0074 0.0008 0.0021 0.0095

(0.2184) (0.0001) (0.0000) (0.0000) (0.0003) (0.0009)
H-Q IC -3.3378 -3.6928 -3.6797

The table shows the estimated expected return β̂0(st) and variance σ̂2
1(st) for each possible value of the state

st. In other words, it shows the estimated coefficients in a restricted version (5), in which β1(st) = 0. Standard
errors are given in parenthesis. The bottom line provides the value of the Hannan and Quinn (1979) information
criteria (H-Q IC), with a lower value indicating a better penalized fit.

Table 2: Transition Probability Model Coefficients in Regime Switching Model without Predic-
tors

Intercepts

Two State Model Three State Model
st/st−1 Bull (i=1) Bear (i=2) Bull (i=1) Normal (i=2) Bear (i=3)

θ̂0,11 θ̂0,21 θ̂0,1j θ̂0,2j θ̂0,3j
Bull (j=1) 1.8780 -1.0058 2.2325 -1.9328 -1.5921

(0.1264) (0.1459) (0.1326) (0.3365) (0.3114)
Normal (j=2) -1.9567 2.2392 -1.4603

(3.4577) (0.6587) (0.3455)
The table entries show the estimated intercepts in (8), the model for the transition probabilities
in (5), which are non-time varying in the absence of a predictor. Standard errors are given in
parenthesis.

Table 3: Coefficient Estimates in Regime Switching Predictive Regression Model with Time
Varying Transition Probabilities

Single State Model Two State Model Three State Model
st =: N/A Bull Bear Bull Normal Bear

β̂0(st) 0.0057 0.0110 -0.0274 0.0153 0.0028 -0.0028
(0.0015) (0.0012) (0.0089) (0.0013) (0.0034) (0.0095)

β̂1(st) 0.0018 0.0020 0.0144 0.0036 0.0032 0.0065
(0.0013) (0.0010) (0.0070) (0.0012) (0.0029) (0.0062)

σ̂2
1(st) 0.0021 0.0009 0.0074 0.0007 0.0014 0.0075

(0.0010) (0.0001) (0.0010) (0.0001) (0.0002) (0.0007)
H-Q IC -3.3396 -3.6911 -3.6478

The table entries show the estimates of the coefficients in the regime switching predictive regression model (5) for
each possible value of the state st. Standard errors are given in parenthesis. The bottom line provides the value
of the Hannan and Quinn (1979) information criteria (H-Q IC), with a lower value indicating a better penalized
fit. Note that the inclusion of the dividend price ratio as a predictor may induce a predictive regression problem,
a solution for which has yet to be provided in this regime switching model. Therefore, standard errors can only be
relied on as a rough indicator of the estimation variance, but should not be employed to draw formal inferences.
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Table 4: Time Varying Transition Probability Model Coefficients in Regime Switching Predictive
Regression Model

Intercepts

Two State Model Three State Model
st/st−1 Bull (i=1) Bear (i=2) Bull (i=1) Normal (i=2) Bear (i=3)

θ̂0,11 θ̂0,21 θ̂0,1j θ̂0,2j θ̂0,3j
Bull (j=1) 2.2589 -1.0872 2.0002 -2.0033 -1.9870

(0.2272) (0.2035) (0.2090) (0.3422) (0.2724)
Normal (j=2) -1.9965 2.0148 -1.9790

(2.6658) (0.3991) (0.3856)

Slope Coefficients

Two State Model Three State Model
st/st−1 Bull (i=1) Bear(i=2) Bull (i=1) Normal (i=2) Bear (i=3)

θ̂1,11 θ̂1,21 θ̂1,1j θ̂1,2j θ̂1,3j
Bull (j=1) 0.3356 -0.3296 0.0139 0.0063 -0.0145

(0.1478) (0.1732) (0.1675) (0.4277) (0.3006)
Normal (j=2) -0.0033 -0.0023 -0.0095

(1.9531) (0.3386) (0.4061)
The table entries show the estimates of the coefficients in (8), the model for the time transition probabilities in
the regime switching predictive regression model (5). Standard errors are given in parenthesis. Note that the
inclusion of the dividend price ratio as a predictor may induce a predictive regression problem, a solution for
which has yet to be provided in this regime switching model. Therefore, standard errors can only be relied on as
a rough indicator of the estimation variance, but should not be employed to draw formal inferences.
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Figure 1: Fitted Bear State Probabilities in Two State Regime Switching Predictive Regression
Model with Time Varying Transition Probabilities.

Major Market Downturns: 1929-1933 The Great Depression; 1937-1938 Recession; 1945 End of
the War Recession; 1960-1961 Recession; 1969-1970 Recession; 1973-1975 Oil Crisis; Early 1980s
Recession; Early 1990s Recession; Early 2000s Recession; Dec 2007-June 2009 Great Recession.
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Figure 2: The size-adjusted power of the OLS based predictive test when the return is generated
from the linear predictive regression model in (7), the predictor is generated by the local-to-
unity process in (11) and (12) with c = −2.5, and the residuals are generated from (13) using a
multivariate normal distribution with δ = −0.95. We set T = 1048.
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Figure 3: The power of the oracle based predictive test when the return is generated from the
linear predictive regression model in (7), the predictor is generated by the local-to-unity process
in (11) and (12) with c = −2.5, and the residuals are generated from (13) using a multivariate
normal distribution with δ = −0.95. We set T = 1048.
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Figure 4: The power of the Bonferroni based predictive test when the return is generated from
the linear predictive regression model in (7), the predictor is generated by the local-to-unity
process in (11) and (12) with c = −2.5, and the residuals are generated from (13) using a
multivariate normal distribution with δ = −0.95. We set T = 1048.
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Figure 5: The size-adjusted power of the OLS based predictive test when the true return model
is the two-state regime switching model in (5) with time varying transition probabilities given by
(8), the predictor is generated by the local-to-unity process in (11) and (12) with c = −2.5, and
the residuals are generated from (13) using a multivariate normal distribution with δ = −0.95.
We set T = 1048.
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Figure 6: The power of the oracle based predictive test when the true return model is the
two-state regime switching model in (5) with time varying transition probabilities given by (8),
the predictor is generated by the local-to-unity process in (11) and (12) with c = −2.5, and the
residuals are generated from (13) using a multivariate normal distribution with δ = −0.95. We
set T = 1048.
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Figure 7: The power of the Bonferroni based predictive test when the true return model is the
two-state regime switching model in (5) with time varying transition probabilities given by (8),
the predictor is generated by the local-to-unity process in (11) and (12) with c = −2.5, and the
residuals are generated from (13) using a multivariate normal distribution with δ = −0.95. We
set T = 1048.
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Figure 8: The power of the LHIVX test in a linear predictive regression model. We plot power
for both k = 1 and for k given by (17) with λ = 1 and v = 0.75 and v = 0.90. The horizontal
axis shows the value of γ in (29) with v2 = 0.80. Here we set c = −2.5, cz = −5.0, and T = 1048.
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Figure 9: The power of the LHIVX test in the two-state regime switching model with time
varying transition probabilities. We plot power for both k = 1 and for k given by (17) with
λ = 1 and v = 0.75 and v = 0.90. The horizontal axis shows the value of γ in (29) with
v2 = 0.80. Here we set c = −2.5, cz = −5.0, and T = 1048.
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